Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 66

1.

Rational development of transformation in Clostridium thermocellum ATCC 27405 via complete methylome analysis and evasion of native restriction-modification systems.

Riley LA, Ji L, Schmitz RJ, Westpheling J, Guss AM.

J Ind Microbiol Biotechnol. 2019 Oct;46(9-10):1435-1443. doi: 10.1007/s10295-019-02218-x. Epub 2019 Jul 24.

2.

Heterologous co-expression of two β-glucanases and a cellobiose phosphorylase resulted in a significant increase in the cellulolytic activity of the Caldicellulosiruptor bescii exoproteome.

Kim SK, Chung D, Himmel ME, Bomble YJ, Westpheling J.

J Ind Microbiol Biotechnol. 2019 May;46(5):687-695. doi: 10.1007/s10295-019-02150-0. Epub 2019 Feb 20.

PMID:
30783893
3.

Deletion of a single glycosyltransferase in Caldicellulosiruptor bescii eliminates protein glycosylation and growth on crystalline cellulose.

Russell J, Kim SK, Duma J, Nothaft H, Himmel ME, Bomble YJ, Szymanski CM, Westpheling J.

Biotechnol Biofuels. 2018 Sep 24;11:259. doi: 10.1186/s13068-018-1266-x. eCollection 2018.

4.

Engineering a spermidine biosynthetic pathway in Clostridium thermocellum results in increased resistance to furans and increased ethanol production.

Kim SK, Westpheling J.

Metab Eng. 2018 Sep;49:267-274. doi: 10.1016/j.ymben.2018.09.002. Epub 2018 Sep 5.

PMID:
30195009
5.

Deletion of the Clostridium thermocellum recA gene reveals that it is required for thermophilic plasmid replication but not plasmid integration at homologous DNA sequences.

Groom J, Chung D, Kim SK, Guss A, Westpheling J.

J Ind Microbiol Biotechnol. 2018 Aug;45(8):753-763. doi: 10.1007/s10295-018-2049-x. Epub 2018 May 28.

6.

Rex in Caldicellulosiruptor bescii: Novel regulon members and its effect on the production of ethanol and overflow metabolites.

Sander K, Chung D, Hyatt D, Westpheling J, Klingeman DM, Rodriguez M Jr, Engle NL, Tschaplinski TJ, Davison BH, Brown SD.

Microbiologyopen. 2019 Feb;8(2):e00639. doi: 10.1002/mbo3.639. Epub 2018 May 23.

7.

High activity CAZyme cassette for improving biomass degradation in thermophiles.

Brunecky R, Chung D, Sarai NS, Hengge N, Russell JF, Young J, Mittal A, Pason P, Vander Wall T, Michener W, Shollenberger T, Westpheling J, Himmel ME, Bomble YJ.

Biotechnol Biofuels. 2018 Feb 1;11:22. doi: 10.1186/s13068-018-1014-2. eCollection 2018.

8.

Expression of a Cellobiose Phosphorylase from Thermotoga maritima in Caldicellulosiruptor bescii Improves the Phosphorolytic Pathway and Results in a Dramatic Increase in Cellulolytic Activity.

Kim SK, Himmel ME, Bomble YJ, Westpheling J.

Appl Environ Microbiol. 2018 Jan 17;84(3). pii: e02348-17. doi: 10.1128/AEM.02348-17. Print 2018 Feb 1.

9.

Heterologous expression of a β-D-glucosidase in Caldicellulosiruptor bescii has a surprisingly modest effect on the activity of the exoproteome and growth on crystalline cellulose.

Kim SK, Chung D, Himmel ME, Bomble YJ, Westpheling J.

J Ind Microbiol Biotechnol. 2017 Dec;44(12):1643-1651. doi: 10.1007/s10295-017-1982-4. Epub 2017 Sep 23.

PMID:
28942503
10.

The Multi Domain Caldicellulosiruptor bescii CelA Cellulase Excels at the Hydrolysis of Crystalline Cellulose.

Brunecky R, Donohoe BS, Yarbrough JM, Mittal A, Scott BR, Ding H, Taylor Ii LE, Russell JF, Chung D, Westpheling J, Teter SA, Himmel ME, Bomble YJ.

Sci Rep. 2017 Aug 29;7(1):9622. doi: 10.1038/s41598-017-08985-w.

11.

In vivo synergistic activity of a CAZyme cassette from Acidothermus cellulolyticus significantly improves the cellulolytic activity of the C. bescii exoproteome.

Kim SK, Chung D, Himmel ME, Bomble YJ, Westpheling J.

Biotechnol Bioeng. 2017 Nov;114(11):2474-2480. doi: 10.1002/bit.26366. Epub 2017 Aug 3.

PMID:
28650071
12.

Expression of a heat-stable NADPH-dependent alcohol dehydrogenase from Thermoanaerobacter pseudethanolicus 39E in Clostridium thermocellum 1313 results in increased hydroxymethylfurfural resistance.

Kim SK, Groom J, Chung D, Elkins J, Westpheling J.

Biotechnol Biofuels. 2017 Mar 15;10:66. doi: 10.1186/s13068-017-0750-z. eCollection 2017.

13.

Engineering the N-terminal end of CelA results in improved performance and growth of Caldicellulosiruptor bescii on crystalline cellulose.

Kim SK, Chung D, Himmel ME, Bomble YJ, Westpheling J.

Biotechnol Bioeng. 2017 May;114(5):945-950. doi: 10.1002/bit.26242.

PMID:
28019666
14.

Heterologous expression of family 10 xylanases from Acidothermus cellulolyticus enhances the exoproteome of Caldicellulosiruptor bescii and growth on xylan substrates.

Kim SK, Chung D, Himmel ME, Bomble YJ, Westpheling J.

Biotechnol Biofuels. 2016 Aug 22;9(1):176. doi: 10.1186/s13068-016-0588-9. eCollection 2016.

15.

Promiscuous plasmid replication in thermophiles: Use of a novel hyperthermophilic replicon for genetic manipulation of Clostridium thermocellum at its optimum growth temperature.

Groom J, Chung D, Olson DG, Lynd LR, Guss AM, Westpheling J.

Metab Eng Commun. 2016 Jan 29;3:30-38. doi: 10.1016/j.meteno.2016.01.004. eCollection 2016 Dec.

16.

Deletion of a gene cluster for [Ni-Fe] hydrogenase maturation in the anaerobic hyperthermophilic bacterium Caldicellulosiruptor bescii identifies its role in hydrogen metabolism.

Cha M, Chung D, Westpheling J.

Appl Microbiol Biotechnol. 2016 Feb;100(4):1823-31. doi: 10.1007/s00253-015-7025-z. Epub 2015 Nov 4.

PMID:
26536872
17.

DNA targeting by the type I-G and type I-A CRISPR-Cas systems of Pyrococcus furiosus.

Elmore J, Deighan T, Westpheling J, Terns RM, Terns MP.

Nucleic Acids Res. 2015 Dec 2;43(21):10353-63. doi: 10.1093/nar/gkv1140. Epub 2015 Oct 30.

18.

Cellulosic ethanol production via consolidated bioprocessing at 75 °C by engineered Caldicellulosiruptor bescii.

Chung D, Cha M, Snyder EN, Elkins JG, Guss AM, Westpheling J.

Biotechnol Biofuels. 2015 Oct 6;8:163. doi: 10.1186/s13068-015-0346-4. eCollection 2015.

19.

Expression of the Acidothermus cellulolyticus E1 endoglucanase in Caldicellulosiruptor bescii enhances its ability to deconstruct crystalline cellulose.

Chung D, Young J, Cha M, Brunecky R, Bomble YJ, Himmel ME, Westpheling J.

Biotechnol Biofuels. 2015 Aug 13;8:113. doi: 10.1186/s13068-015-0296-x. eCollection 2015.

20.

Expression of a heat-stable NADPH-dependent alcohol dehydrogenase in Caldicellulosiruptor bescii results in furan aldehyde detoxification.

Chung D, Verbeke TJ, Cross KL, Westpheling J, Elkins JG.

Biotechnol Biofuels. 2015 Jul 22;8:102. doi: 10.1186/s13068-015-0287-y. eCollection 2015.

21.

Base-resolution detection of N4-methylcytosine in genomic DNA using 4mC-Tet-assisted-bisulfite- sequencing.

Yu M, Ji L, Neumann DA, Chung DH, Groom J, Westpheling J, He C, Schmitz RJ.

Nucleic Acids Res. 2015 Dec 2;43(21):e148. doi: 10.1093/nar/gkv738. Epub 2015 Jul 15.

22.

Homologous expression of the Caldicellulosiruptor bescii CelA reveals that the extracellular protein is glycosylated.

Chung D, Young J, Bomble YJ, Vander Wall TA, Groom J, Himmel ME, Westpheling J.

PLoS One. 2015 Mar 23;10(3):e0119508. doi: 10.1371/journal.pone.0119508. eCollection 2015.

23.

Deletion of a gene cluster encoding pectin degrading enzymes in Caldicellulosiruptor bescii reveals an important role for pectin in plant biomass recalcitrance.

Chung D, Pattathil S, Biswal AK, Hahn MG, Mohnen D, Westpheling J.

Biotechnol Biofuels. 2014 Oct 10;7(1):147. doi: 10.1186/s13068-014-0147-1. eCollection 2014.

24.

Deletion of Caldicellulosiruptor bescii CelA reveals its crucial role in the deconstruction of lignocellulosic biomass.

Young J, Chung D, Bomble YJ, Himmel ME, Westpheling J.

Biotechnol Biofuels. 2014 Oct 9;7(1):142. doi: 10.1186/s13068-014-0142-6. eCollection 2014.

25.

Heterologous complementation of a pyrF deletion in Caldicellulosiruptor hydrothermalis generates a new host for the analysis of biomass deconstruction.

Groom J, Chung D, Young J, Westpheling J.

Biotechnol Biofuels. 2014 Sep 16;7(1):132. doi: 10.1186/s13068-014-0132-8. eCollection 2014.

26.

Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii.

Chung D, Cha M, Guss AM, Westpheling J.

Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8931-6. doi: 10.1073/pnas.1402210111. Epub 2014 Jun 2.

27.

Isolation and bioinformatic analysis of a novel transposable element, ISCbe4, from the hyperthermophilic bacterium, Caldicellulosiruptor bescii.

Cha M, Wang H, Chung D, Bennetzen JL, Westpheling J.

J Ind Microbiol Biotechnol. 2013 Dec;40(12):1443-8. doi: 10.1007/s10295-013-1345-8. Epub 2013 Oct 1.

PMID:
24081709
28.

Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass.

Cha M, Chung D, Elkins JG, Guss AM, Westpheling J.

Biotechnol Biofuels. 2013 Jun 3;6(1):85. doi: 10.1186/1754-6834-6-85.

29.

Overcoming restriction as a barrier to DNA transformation in Caldicellulosiruptor species results in efficient marker replacement.

Chung D, Farkas J, Westpheling J.

Biotechnol Biofuels. 2013 May 29;6(1):82. doi: 10.1186/1754-6834-6-82.

30.

Construction of a stable replicating shuttle vector for Caldicellulosiruptor species: use for extending genetic methodologies to other members of this genus.

Chung D, Cha M, Farkas J, Westpheling J.

PLoS One. 2013 May 3;8(5):e62881. doi: 10.1371/journal.pone.0062881. Print 2013.

31.

Detection of a novel active transposable element in Caldicellulosiruptor hydrothermalis and a new search for elements in this genus.

Chung D, Farkas J, Westpheling J.

J Ind Microbiol Biotechnol. 2013 May;40(5):517-21. doi: 10.1007/s10295-013-1244-z. Epub 2013 Mar 10.

32.

Improved growth media and culture techniques for genetic analysis and assessment of biomass utilization by Caldicellulosiruptor bescii.

Farkas J, Chung D, Cha M, Copeland J, Grayeski P, Westpheling J.

J Ind Microbiol Biotechnol. 2013 Jan;40(1):41-9. doi: 10.1007/s10295-012-1202-1. Epub 2012 Nov 13.

33.

Methylation by a unique α-class N4-cytosine methyltransferase is required for DNA transformation of Caldicellulosiruptor bescii DSM6725.

Chung D, Farkas J, Huddleston JR, Olivar E, Westpheling J.

PLoS One. 2012;7(8):e43844. doi: 10.1371/journal.pone.0043844. Epub 2012 Aug 22.

34.

Recombinogenic properties of Pyrococcus furiosus strain COM1 enable rapid selection of targeted mutants.

Farkas J, Stirrett K, Lipscomb GL, Nixon W, Scott RA, Adams MW, Westpheling J.

Appl Environ Microbiol. 2012 Jul;78(13):4669-76. doi: 10.1128/AEM.00936-12. Epub 2012 Apr 27.

35.

Deletion strains reveal metabolic roles for key elemental sulfur-responsive proteins in Pyrococcus furiosus.

Bridger SL, Clarkson SM, Stirrett K, DeBarry MB, Lipscomb GL, Schut GJ, Westpheling J, Scott RA, Adams MW.

J Bacteriol. 2011 Dec;193(23):6498-504. doi: 10.1128/JB.05445-11. Epub 2011 Sep 30.

36.

Defining components of the chromosomal origin of replication of the hyperthermophilic archaeon Pyrococcus furiosus needed for construction of a stable replicating shuttle vector.

Farkas J, Chung D, DeBarry M, Adams MW, Westpheling J.

Appl Environ Microbiol. 2011 Sep;77(18):6343-9. doi: 10.1128/AEM.05057-11. Epub 2011 Jul 22.

37.

Identification and characterization of CbeI, a novel thermostable restriction enzyme from Caldicellulosiruptor bescii DSM 6725 and a member of a new subfamily of HaeIII-like enzymes.

Chung DH, Huddleston JR, Farkas J, Westpheling J.

J Ind Microbiol Biotechnol. 2011 Nov;38(11):1867-77. doi: 10.1007/s10295-011-0976-x. Epub 2011 May 22.

38.

Natural competence in the hyperthermophilic archaeon Pyrococcus furiosus facilitates genetic manipulation: construction of markerless deletions of genes encoding the two cytoplasmic hydrogenases.

Lipscomb GL, Stirrett K, Schut GJ, Yang F, Jenney FE Jr, Scott RA, Adams MW, Westpheling J.

Appl Environ Microbiol. 2011 Apr;77(7):2232-8. doi: 10.1128/AEM.02624-10. Epub 2011 Feb 11.

39.

Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725.

Dam P, Kataeva I, Yang SJ, Zhou F, Yin Y, Chou W, Poole FL 2nd, Westpheling J, Hettich R, Giannone R, Lewis DL, Kelly R, Gilbert HJ, Henrissat B, Xu Y, Adams MW.

Nucleic Acids Res. 2011 Apr;39(8):3240-54. doi: 10.1093/nar/gkq1281. Epub 2011 Jan 11.

40.

Classification of 'Anaerocellum thermophilum' strain DSM 6725 as Caldicellulosiruptor bescii sp. nov.

Yang SJ, Kataeva I, Wiegel J, Yin Y, Dam P, Xu Y, Westpheling J, Adams MW.

Int J Syst Evol Microbiol. 2010 Sep;60(Pt 9):2011-5. doi: 10.1099/ijs.0.017731-0. Epub 2009 Oct 2.

PMID:
19801388
41.

Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe "Anaerocellum thermophilum" DSM 6725.

Yang SJ, Kataeva I, Hamilton-Brehm SD, Engle NL, Tschaplinski TJ, Doeppke C, Davis M, Westpheling J, Adams MW.

Appl Environ Microbiol. 2009 Jul;75(14):4762-9. doi: 10.1128/AEM.00236-09. Epub 2009 May 22.

42.

Genome sequence of the anaerobic, thermophilic, and cellulolytic bacterium "Anaerocellum thermophilum" DSM 6725.

Kataeva IA, Yang SJ, Dam P, Poole FL 2nd, Yin Y, Zhou F, Chou WC, Xu Y, Goodwin L, Sims DR, Detter JC, Hauser LJ, Westpheling J, Adams MW.

J Bacteriol. 2009 Jun;191(11):3760-1. doi: 10.1128/JB.00256-09. Epub 2009 Apr 3.

43.

Branched-chain amino acid catabolism provides precursors for the Type II polyketide antibiotic, actinorhodin, via pathways that are nutrient dependent.

Stirrett K, Denoya C, Westpheling J.

J Ind Microbiol Biotechnol. 2009 Jan;36(1):129-37. doi: 10.1007/s10295-008-0480-0. Epub 2008 Oct 8.

PMID:
18841403
44.

Extremely thermophilic microorganisms for biomass conversion: status and prospects.

Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MW, Kelly RM.

Curr Opin Biotechnol. 2008 Jun;19(3):210-7. doi: 10.1016/j.copbio.2008.04.007. Epub 2008 Jun 2. Review.

PMID:
18524567
45.

A new TetR family transcriptional regulator required for morphogenesis in Streptomyces coelicolor.

Hillerich B, Westpheling J.

J Bacteriol. 2008 Jan;190(1):61-7. Epub 2007 Oct 26.

46.

An integrative expression vector for Actinosynnema pretiosum.

Goh S, Camattari A, Ng D, Song R, Madden K, Westpheling J, Wong VV.

BMC Biotechnol. 2007 Oct 24;7:72.

49.

Identification of three new genes involved in morphogenesis and antibiotic production in Streptomyces coelicolor.

Sprusansky O, Zhou L, Jordan S, White J, Westpheling J.

J Bacteriol. 2003 Oct;185(20):6147-57.

50.

Structural and genetic analysis of the BldB protein of Streptomyces coelicolor.

Eccleston M, Ali RA, Seyler R, Westpheling J, Nodwell J.

J Bacteriol. 2002 Aug;184(15):4270-6.

Supplemental Content

Loading ...
Support Center