Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 130

1.

pH-profiles of cellulases depend on the substrate and architecture of the binding region.

Røjel N, Kari J, Sørensen TH, Borch K, Westh P.

Biotechnol Bioeng. 2019 Oct 21. doi: 10.1002/bit.27206. [Epub ahead of print]

PMID:
31631319
2.

A practical approach to steady-state kinetic analysis of cellulases acting on their natural insoluble substrate.

Kari J, Christensen SJ, Andersen M, Baiget SS, Borch K, Westh P.

Anal Biochem. 2019 Dec 1;586:113411. doi: 10.1016/j.ab.2019.113411. Epub 2019 Sep 11.

PMID:
31520594
3.

A biochemical comparison of fungal GH6 cellobiohydrolases.

Christensen SJ, Krogh KBRM, Spodsberg N, Borch K, Westh P.

Biochem J. 2019 Aug 5;476(15):2157-2172. doi: 10.1042/BCJ20190185.

PMID:
31311837
4.

Systematic deletions in the cellobiohydrolase (CBH) Cel7A from the fungus Trichoderma reesei reveal flexible loops critical for CBH activity.

Schiano-di-Cola C, Røjel N, Jensen K, Kari J, Sørensen TH, Borch K, Westh P.

J Biol Chem. 2019 Feb 8;294(6):1807-1815. doi: 10.1074/jbc.RA118.006699. Epub 2018 Dec 11.

PMID:
30538133
5.

Rate-limiting step and substrate accessibility of cellobiohydrolase Cel6A from Trichoderma reesei.

Christensen SJ, Kari J, Badino SF, Borch K, Westh P.

FEBS J. 2018 Dec;285(23):4482-4493. doi: 10.1111/febs.14668. Epub 2018 Oct 17.

PMID:
30281909
6.

Correlation of structure, function and protein dynamics in GH7 cellobiohydrolases from Trichoderma atroviride, T. reesei and T. harzianum.

Borisova AS, Eneyskaya EV, Jana S, Badino SF, Kari J, Amore A, Karlsson M, Hansson H, Sandgren M, Himmel ME, Westh P, Payne CM, Kulminskaya AA, Ståhlberg J.

Biotechnol Biofuels. 2018 Jan 13;11:5. doi: 10.1186/s13068-017-1006-7. eCollection 2018.

7.

Thermoactivation of a cellobiohydrolase.

Westh P, Borch K, Sørensen T, Tokin R, Kari J, Badino S, Cavaleiro MA, Røjel N, Christensen S, Vesterager CS, Schiano-di-Cola C.

Biotechnol Bioeng. 2018 Apr;115(4):831-838. doi: 10.1002/bit.26513. Epub 2018 Jan 16.

PMID:
29240229
8.

Michaelis-Menten equation for degradation of insoluble substrate.

Andersen M, Kari J, Borch K, Westh P.

Math Biosci. 2018 Feb;296:93-97. doi: 10.1016/j.mbs.2017.11.011. Epub 2018 Jan 9.

PMID:
29197509
9.

The influence of different linker modifications on the catalytic activity and cellulose affinity of cellobiohydrolase Cel7A from Hypocrea jecorina.

Badino SF, Bathke JK, Sørensen TH, Windahl MS, Jensen K, Peters GHJ, Borch K, Westh P.

Protein Eng Des Sel. 2017 Jul 1;30(7):495-501. doi: 10.1093/protein/gzx036.

PMID:
28873985
10.

Direct kinetic comparison of the two cellobiohydrolases Cel6A and Cel7A from Hypocrea jecorina.

Badino SF, Kari J, Christensen SJ, Borch K, Westh P.

Biochim Biophys Acta Proteins Proteom. 2017 Dec;1865(12):1739-1745. doi: 10.1016/j.bbapap.2017.08.013. Epub 2017 Aug 24.

PMID:
28844741
11.

A quenched-flow system for measuring heterogeneous enzyme kinetics with sub-second time resolution.

Olsen JP, Kari J, Borch K, Westh P.

Enzyme Microb Technol. 2017 Oct;105:45-50. doi: 10.1016/j.enzmictec.2017.06.009. Epub 2017 Jun 13.

PMID:
28756860
12.

Exo-exo synergy between Cel6A and Cel7A from Hypocrea jecorina: Role of carbohydrate binding module and the endo-lytic character of the enzymes.

Badino SF, Christensen SJ, Kari J, Windahl MS, Hvidt S, Borch K, Westh P.

Biotechnol Bioeng. 2017 Aug;114(8):1639-1647. doi: 10.1002/bit.26276. Epub 2017 Mar 16.

PMID:
28244592
13.

Anomeric Selectivity and Product Profile of a Processive Cellulase.

Kari J, Kont R, Borch K, Buskov S, Olsen JP, Cruyz-Bagger N, Väljamäe P, Westh P.

Biochemistry. 2017 Jan 10;56(1):167-178. doi: 10.1021/acs.biochem.6b00636. Epub 2016 Dec 27.

PMID:
28026938
14.

Inter-domain Synergism Is Required for Efficient Feeding of Cellulose Chain into Active Site of Cellobiohydrolase Cel7A.

Kont R, Kari J, Borch K, Westh P, Väljamäe P.

J Biol Chem. 2016 Dec 9;291(50):26013-26023. Epub 2016 Oct 25.

15.

Endo/exo-synergism of cellulases increases with substrate conversion.

Olsen JP, Borch K, Westh P.

Biotechnol Bioeng. 2017 Mar;114(3):696-700. doi: 10.1002/bit.26179. Epub 2016 Dec 9.

PMID:
27617666
16.

Loop variants of the thermophile Rasamsonia emersonii Cel7A with improved activity against cellulose.

Sørensen TH, Windahl MS, McBrayer B, Kari J, Olsen JP, Borch K, Westh P.

Biotechnol Bioeng. 2017 Jan;114(1):53-62. doi: 10.1002/bit.26050. Epub 2016 Sep 21.

PMID:
27424518
17.

Rate of Threading a Cellulose Chain into the Binding Tunnel of a Cellulase.

Cruys-Bagger N, Alasepp K, Andersen M, Ottesen J, Borch K, Westh P.

J Phys Chem B. 2016 Jun 30;120(25):5591-600. doi: 10.1021/acs.jpcb.6b01877. Epub 2016 Jun 17.

PMID:
27248184
18.

A heuristic model to quantify the impact of excess cyclodextrin on oral drug absorption from aqueous solution.

Olesen NE, Westh P, Holm R.

Eur J Pharm Biopharm. 2016 May;102:142-51. doi: 10.1016/j.ejpb.2016.03.011. Epub 2016 Mar 8.

PMID:
26969263
19.

Effect of cyclodextrin concentration on the oral bioavailability of danazol and cinnarizine in rats.

Holm R, Olesen NE, Hartvig RA, Jørgensen EB, Larsen DB, Westh P.

Eur J Pharm Biopharm. 2016 Apr;101:9-14. doi: 10.1016/j.ejpb.2016.01.007. Epub 2016 Jan 15.

PMID:
26776271
20.

Hydration Differences Explain the Large Variations in the Complexation Thermodynamics of Modified γ-Cyclodextrins with Bile Salts.

Køhler J, Schönbeck C, Westh P, Holm R.

J Phys Chem B. 2016 Jan 28;120(3):396-405. doi: 10.1021/acs.jpcb.5b10536. Epub 2016 Jan 19.

PMID:
26731242
21.

Mechanism of product inhibition for cellobiohydrolase Cel7A during hydrolysis of insoluble cellulose.

Olsen JP, Alasepp K, Kari J, Cruys-Bagger N, Borch K, Westh P.

Biotechnol Bioeng. 2016 Jun;113(6):1178-86. doi: 10.1002/bit.25900. Epub 2016 Jan 28.

PMID:
26636743
22.

Displacement of Drugs From Cyclodextrin Complexes by Bile Salts: A Suggestion of an Intestinal Drug-Solubilizing Capacity From an In Vitro Model.

Olesen NE, Westh P, Holm R.

J Pharm Sci. 2016 Sep;105(9):2640-2647. doi: 10.1002/jps.24678. Epub 2016 Feb 22.

PMID:
26502027
23.

Thermodynamic investigation of the interaction between cyclodextrins and preservatives - Application and verification in a mathematical model to determine the needed preservative surplus in aqueous cyclodextrin formulations.

Holm R, Olesen NE, Alexandersen SD, Dahlgaard BN, Westh P, Mu H.

Eur J Pharm Sci. 2016 May 25;87:22-9. doi: 10.1016/j.ejps.2015.09.011. Epub 2015 Sep 21.

PMID:
26391874
24.

Effects of constituent ions of a phosphonium-based ionic liquid on molecular organization of H2O as probed by 1-propanol: tetrabutylphosphonium and trifluoroacetate ions.

Morita T, Miki K, Nitta A, Ohgi H, Westh P.

Phys Chem Chem Phys. 2015 Sep 14;17(34):22170-8. doi: 10.1039/c5cp02329g. Epub 2015 Aug 4.

PMID:
26239281
25.

Temperature Effects on Kinetic Parameters and Substrate Affinity of Cel7A Cellobiohydrolases.

Sørensen TH, Cruys-Bagger N, Windahl MS, Badino SF, Borch K, Westh P.

J Biol Chem. 2015 Sep 4;290(36):22193-202. doi: 10.1074/jbc.M115.658930. Epub 2015 Jul 16.

26.

Free Energy Diagram for the Heterogeneous Enzymatic Hydrolysis of Glycosidic Bonds in Cellulose.

Sørensen TH, Cruys-Bagger N, Borch K, Westh P.

J Biol Chem. 2015 Sep 4;290(36):22203-11. doi: 10.1074/jbc.M115.659656. Epub 2015 Jul 16.

27.

Determination of thermodynamic potentials and the aggregation number for micelles with the mass-action model by isothermal titration calorimetry: A case study on bile salts.

Olesen NE, Westh P, Holm R.

J Colloid Interface Sci. 2015 Sep 1;453:79-89. doi: 10.1016/j.jcis.2015.03.069. Epub 2015 May 2.

PMID:
25978555
28.

Effect of mutations on the thermostability of Aspergillus aculeatus β-1,4-galactanase.

Torpenholt S, De Maria L, Olsson MH, Christensen LH, Skjøt M, Westh P, Jensen JH, Lo Leggio L.

Comput Struct Biotechnol J. 2015 Apr 9;13:256-64. doi: 10.1016/j.csbj.2015.03.010. eCollection 2015.

29.

Probing substrate interactions in the active tunnel of a catalytically deficient cellobiohydrolase (Cel7).

Colussi F, Sørensen TH, Alasepp K, Kari J, Cruys-Bagger N, Windahl MS, Olsen JP, Borch K, Westh P.

J Biol Chem. 2015 Jan 23;290(4):2444-54. doi: 10.1074/jbc.M114.624163. Epub 2014 Dec 4.

30.

Reversibility of substrate adsorption for the cellulases Cel7A, Cel6A, and Cel7B from Hypocrea jecorina.

Pellegrini VO, Lei N, Kyasaram M, Olsen JP, Badino SF, Windahl MS, Colussi F, Cruys-Bagger N, Borch K, Westh P.

Langmuir. 2014 Oct 28;30(42):12602-9. doi: 10.1021/la5024423. Epub 2014 Oct 16.

PMID:
25322452
31.

Kinetics of cellobiohydrolase (Cel7A) variants with lowered substrate affinity.

Kari J, Olsen J, Borch K, Cruys-Bagger N, Jensen K, Westh P.

J Biol Chem. 2014 Nov 21;289(47):32459-68. doi: 10.1074/jbc.M114.604264. Epub 2014 Sep 30.

32.

Interaction of neurotransmitters with a phospholipid bilayer: a molecular dynamics study.

Peters GH, Werge M, Elf-Lind MN, Madsen JJ, Velardez GF, Westh P.

Chem Phys Lipids. 2014 Dec;184:7-17. doi: 10.1016/j.chemphyslip.2014.08.003. Epub 2014 Aug 23.

PMID:
25159594
33.

Computational investigation of enthalpy-entropy compensation in complexation of glycoconjugated bile salts with β-cyclodextrin and analogs.

Tidemand KD, Schönbeck C, Holm R, Westh P, Peters GH.

J Phys Chem B. 2014 Sep 18;118(37):10889-97. doi: 10.1021/jp506716d. Epub 2014 Sep 8.

PMID:
25158050
34.

Complexation thermodynamics of modified cyclodextrins: extended cavities and distorted structures.

Schönbeck C, Westh P, Holm R.

J Phys Chem B. 2014 Aug 28;118(34):10120-9. doi: 10.1021/jp506001j. Epub 2014 Aug 15.

PMID:
25093241
35.

Lipophilic contaminants influence cold tolerance of invertebrates through changes in cell membrane fluidity.

Holmstrup M, Bouvrais H, Westh P, Wang C, Slotsbo S, Waagner D, Enggrob K, Ipsen JH.

Environ Sci Technol. 2014 Aug 19;48(16):9797-803. doi: 10.1021/es502221g. Epub 2014 Aug 4.

PMID:
25050459
36.

The role of product inhibition as a yield-determining factor in enzymatic high-solid hydrolysis of pretreated corn stover.

Olsen SN, Borch K, Cruys-Bagger N, Westh P.

Appl Biochem Biotechnol. 2014 Sep;174(1):146-55. doi: 10.1007/s12010-014-1049-1. Epub 2014 Jul 16.

PMID:
25028248
37.

How much weaker are the effects of cations than those of anions? The effects of K+ and Cs+ on the molecular organization of liquid H2O.

Morita T, Westh P, Nishikawa K, Koga Y.

J Phys Chem B. 2014 Jul 24;118(29):8744-9. doi: 10.1021/jp504245c. Epub 2014 Jul 15.

PMID:
25000451
38.

In situ stability of substrate-associated cellulases studied by DSC.

Alasepp K, Borch K, Cruys-Bagger N, Badino S, Jensen K, Sørensen TH, Windahl MS, Westh P.

Langmuir. 2014 Jun 24;30(24):7134-42. doi: 10.1021/la500161e. Epub 2014 Jun 10.

PMID:
24856176
39.

A pyranose dehydrogenase-based biosensor for kinetic analysis of enzymatic hydrolysis of cellulose by cellulases.

Cruys-Bagger N, Badino SF, Tokin R, Gontsarik M, Fathalinejad S, Jensen K, Toscano MD, Sørensen TH, Borch K, Tatsumi H, Väljamäe P, Westh P.

Enzyme Microb Technol. 2014 May 10;58-59:68-74. doi: 10.1016/j.enzmictec.2014.03.002. Epub 2014 Mar 12.

PMID:
24731827
40.

Low thermodynamic but high kinetic stability of an antifreeze protein from Rhagium mordax.

Friis DS, Johnsen JL, Kristiansen E, Westh P, Ramløv H.

Protein Sci. 2014 Jun;23(6):760-8. doi: 10.1002/pro.2459. Epub 2014 Apr 3.

41.

Molecular and component volumes of N,N-dimethyl-N-alkylamine N-oxides in DOPC bilayers.

Belička M, Klacsová M, Karlovská J, Westh P, Devínsky F, Balgavý P.

Chem Phys Lipids. 2014 May;180:1-6. doi: 10.1016/j.chemphyslip.2014.02.007. Epub 2014 Mar 11.

PMID:
24631067
42.

A graphene screen-printed carbon electrode for real-time measurements of unoccupied active sites in a cellulase.

Cruys-Bagger N, Tatsumi H, Borch K, Westh P.

Anal Biochem. 2014 Feb 15;447:162-8. doi: 10.1016/j.ab.2013.11.024. Epub 2013 Dec 1.

PMID:
24299990
43.

Effects of some salts on H2O as probed by a thermodynamic signature of glycerol: towards understanding the Hofmeister effects (VII).

Koga Y, Westh P.

Phys Chem Chem Phys. 2014 Jan 7;16(1):335-44. doi: 10.1039/c3cp53474j.

PMID:
24257505
44.

Transient kinetics and rate-limiting steps for the processive cellobiohydrolase Cel7A: effects of substrate structure and carbohydrate binding domain.

Cruys-Bagger N, Tatsumi H, Ren GR, Borch K, Westh P.

Biochemistry. 2013 Dec 10;52(49):8938-48. doi: 10.1021/bi401210n. Epub 2013 Nov 20.

PMID:
24228828
45.

A steady-state theory for processive cellulases.

Cruys-Bagger N, Elmerdahl J, Praestgaard E, Borch K, Westh P.

FEBS J. 2013 Aug;280(16):3952-61. doi: 10.1111/febs.12397. Epub 2013 Jul 12.

46.

Analysis of the shape fluctuations of reconstituted membranes using GUVs made from lipid extracts of invertebrates.

Bouvrais H, Holmstrup M, Westh P, Ipsen JH.

Biol Open. 2013 Jan 31;2(4):373-8. doi: 10.1242/bio.20133434. Print 2013 Apr 15.

47.

Product inhibition of five Hypocrea jecorina cellulases.

Murphy L, Bohlin C, Baumann MJ, Olsen SN, Sørensen TH, Anderson L, Borch K, Westh P.

Enzyme Microb Technol. 2013 Mar 5;52(3):163-9. doi: 10.1016/j.enzmictec.2013.01.002. Epub 2013 Jan 14.

PMID:
23410927
48.

Binding of serotonin to lipid membranes.

Peters GH, Wang C, Cruys-Bagger N, Velardez GF, Madsen JJ, Westh P.

J Am Chem Soc. 2013 Feb 13;135(6):2164-71. doi: 10.1021/ja306681d. Epub 2013 Jan 31.

PMID:
23311719
49.

pH regulation of the kinetic stability of the lipase from Thermomyces lanuginosus.

Wang H, Andersen KK, Sehgal P, Hagedorn J, Westh P, Borch K, Otzen DE.

Biochemistry. 2013 Jan 8;52(1):264-76. doi: 10.1021/bi301258e. Epub 2012 Dec 26.

PMID:
23249182
50.

An amperometric enzyme biosensor for real-time measurements of cellobiohydrolase activity on insoluble cellulose.

Cruys-Bagger N, Ren G, Tatsumi H, Baumann MJ, Spodsberg N, Andersen HD, Gorton L, Borch K, Westh P.

Biotechnol Bioeng. 2012 Dec;109(12):3199-204. doi: 10.1002/bit.24593. Epub 2012 Jul 25.

PMID:
22767376

Supplemental Content

Support Center