Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 173

1.

Synthetic microbial consortia for small molecule production.

Sgobba E, Wendisch VF.

Curr Opin Biotechnol. 2019 Oct 15;62:72-79. doi: 10.1016/j.copbio.2019.09.011. [Epub ahead of print] Review. No abstract available.

PMID:
31627138
2.

Bromination of L-tryptophan in a Fermentative Process With Corynebacterium glutamicum.

Veldmann KH, Dachwitz S, Risse JM, Lee JH, Sewald N, Wendisch VF.

Front Bioeng Biotechnol. 2019 Sep 18;7:219. doi: 10.3389/fbioe.2019.00219. eCollection 2019.

3.

Fermentative Production of N-Alkylated Glycine Derivatives by Recombinant Corynebacterium glutamicum Using a Mutant of Imine Reductase DpkA From Pseudomonas putida.

Mindt M, Hannibal S, Heuser M, Risse JM, Sasikumar K, Nampoothiri KM, Wendisch VF.

Front Bioeng Biotechnol. 2019 Sep 26;7:232. doi: 10.3389/fbioe.2019.00232. eCollection 2019.

4.

Characterization of D-Arabitol as Newly Discovered Carbon Source of Bacillus methanolicus.

López MG, Irla M, Brito LF, Wendisch VF.

Front Microbiol. 2019 Jul 31;10:1725. doi: 10.3389/fmicb.2019.01725. eCollection 2019.

5.

Establishment and application of CRISPR interference to affect sporulation, hydrogen peroxide detoxification, and mannitol catabolism in the methylotrophic thermophile Bacillus methanolicus.

Schultenkämper K, Brito LF, López MG, Brautaset T, Wendisch VF.

Appl Microbiol Biotechnol. 2019 Jul;103(14):5879-5889. doi: 10.1007/s00253-019-09907-8. Epub 2019 May 28.

PMID:
31139899
6.

Metabolic engineering advances and prospects for amino acid production.

Wendisch VF.

Metab Eng. 2019 Mar 30. pii: S1096-7176(19)30100-4. doi: 10.1016/j.ymben.2019.03.008. [Epub ahead of print] Review.

PMID:
30940506
7.

Corrigendum: Genome-Based Genetic Tool Development for Bacillus methanolicus: Theta- and Rolling Circle-Replicating Plasmids for Inducible Gene Expression and Application to Methanol-Based Cadaverine Production.

Irla M, Heggeset TMB, Nærdal I, Paul L, Haugen T, Le SB, Brautaset T, Wendisch VF.

Front Microbiol. 2019 Mar 12;10:425. doi: 10.3389/fmicb.2019.00425. eCollection 2019.

8.

Function of L-Pipecolic Acid as Compatible Solute in Corynebacterium glutamicum as Basis for Its Production Under Hyperosmolar Conditions.

Pérez-García F, Brito LF, Wendisch VF.

Front Microbiol. 2019 Feb 25;10:340. doi: 10.3389/fmicb.2019.00340. eCollection 2019.

9.

Xylose as preferred substrate for sarcosine production by recombinant Corynebacterium glutamicum.

Mindt M, Heuser M, Wendisch VF.

Bioresour Technol. 2019 Jun;281:135-142. doi: 10.1016/j.biortech.2019.02.084. Epub 2019 Feb 19.

PMID:
30818264
10.

Metabolic engineering of Corynebacterium glutamicum for the fermentative production of halogenated tryptophan.

Veldmann KH, Minges H, Sewald N, Lee JH, Wendisch VF.

J Biotechnol. 2019 Feb 10;291:7-16. doi: 10.1016/j.jbiotec.2018.12.008. Epub 2018 Dec 20.

PMID:
30579891
11.

Fermentative Production of N-Methylglutamate From Glycerol by Recombinant Pseudomonas putida.

Mindt M, Walter T, Risse JM, Wendisch VF.

Front Bioeng Biotechnol. 2018 Nov 9;6:159. doi: 10.3389/fbioe.2018.00159. eCollection 2018.

12.

Efficient Production of the Dicarboxylic Acid Glutarate by Corynebacterium glutamicum via a Novel Synthetic Pathway.

Pérez-García F, Jorge JMP, Dreyszas A, Risse JM, Wendisch VF.

Front Microbiol. 2018 Oct 30;9:2589. doi: 10.3389/fmicb.2018.02589. eCollection 2018.

13.
14.

One-step process for production of N-methylated amino acids from sugars and methylamine using recombinant Corynebacterium glutamicum as biocatalyst.

Mindt M, Risse JM, Gruß H, Sewald N, Eikmanns BJ, Wendisch VF.

Sci Rep. 2018 Aug 27;8(1):12895. doi: 10.1038/s41598-018-31309-5.

15.

Carotenoid Production by Recombinant Corynebacterium glutamicum: Strain Construction, Cultivation, Extraction, and Quantification of Carotenoids and Terpenes.

Henke NA, Frohwitter J, Peters-Wendisch P, Wendisch VF.

Methods Mol Biol. 2018;1852:127-141. doi: 10.1007/978-1-4939-8742-9_8.

PMID:
30109629
16.

Coproduction of cell-bound and secreted value-added compounds: Simultaneous production of carotenoids and amino acids by Corynebacterium glutamicum.

Henke NA, Wiebe D, Pérez-García F, Peters-Wendisch P, Wendisch VF.

Bioresour Technol. 2018 Jan;247:744-752. doi: 10.1016/j.biortech.2017.09.167. Epub 2017 Sep 27.

PMID:
30060409
17.

Transport and metabolic engineering of the cell factory Corynebacterium glutamicum.

Pérez-García F, Wendisch VF.

FEMS Microbiol Lett. 2018 Aug 1;365(16). doi: 10.1093/femsle/fny166. Review.

PMID:
29982619
18.

Patchoulol Production with Metabolically Engineered Corynebacterium glutamicum.

Henke NA, Wichmann J, Baier T, Frohwitter J, Lauersen KJ, Risse JM, Peters-Wendisch P, Kruse O, Wendisch VF.

Genes (Basel). 2018 Apr 17;9(4). pii: E219. doi: 10.3390/genes9040219.

19.

Synthetic Escherichia coli-Corynebacterium glutamicum consortia for l-lysine production from starch and sucrose.

Sgobba E, Stumpf AK, Vortmann M, Jagmann N, Krehenbrink M, Dirks-Hofmeister ME, Moerschbacher B, Philipp B, Wendisch VF.

Bioresour Technol. 2018 Jul;260:302-310. doi: 10.1016/j.biortech.2018.03.113. Epub 2018 Mar 30.

PMID:
29631180
20.

Biotechnological production of mono- and diamines using bacteria: recent progress, applications, and perspectives.

Wendisch VF, Mindt M, Pérez-García F.

Appl Microbiol Biotechnol. 2018 Apr;102(8):3583-3594. doi: 10.1007/s00253-018-8890-z. Epub 2018 Mar 8. Review.

PMID:
29520601
21.
22.

Detailed transcriptome analysis of the plant growth promoting Paenibacillus riograndensis SBR5 by using RNA-seq technology.

Brito LF, Irla M, Kalinowski J, Wendisch VF.

BMC Genomics. 2017 Nov 3;18(1):846. doi: 10.1186/s12864-017-4235-z.

23.

Reclassification of Paenibacillus riograndensis as a Genomovar of Paenibacillus sonchi: Genome-Based Metrics Improve Bacterial Taxonomic Classification.

Sant'Anna FH, Ambrosini A, de Souza R, de Carvalho Fernandes G, Bach E, Balsanelli E, Baura V, Brito LF, Wendisch VF, de Oliveira Pedrosa F, de Souza EM, Passaglia LMP.

Front Microbiol. 2017 Oct 4;8:1849. doi: 10.3389/fmicb.2017.01849. eCollection 2017.

24.

Corynebacterium glutamicum Chassis C1*: Building and Testing a Novel Platform Host for Synthetic Biology and Industrial Biotechnology.

Baumgart M, Unthan S, Kloß R, Radek A, Polen T, Tenhaef N, Müller MF, Küberl A, Siebert D, Brühl N, Marin K, Hans S, Krämer R, Bott M, Kalinowski J, Wiechert W, Seibold G, Frunzke J, Rückert C, Wendisch VF, Noack S.

ACS Synth Biol. 2018 Jan 19;7(1):132-144. doi: 10.1021/acssynbio.7b00261. Epub 2017 Aug 30.

PMID:
28803482
25.

In vivo plug-and-play: a modular multi-enzyme single-cell catalyst for the asymmetric amination of ketoacids and ketones.

Farnberger JE, Lorenz E, Richter N, Wendisch VF, Kroutil W.

Microb Cell Fact. 2017 Jul 28;16(1):132. doi: 10.1186/s12934-017-0750-5.

26.

Physiological roles of sigma factor SigD in Corynebacterium glutamicum.

Taniguchi H, Busche T, Patschkowski T, Niehaus K, Pátek M, Kalinowski J, Wendisch VF.

BMC Microbiol. 2017 Jul 12;17(1):158. doi: 10.1186/s12866-017-1067-6.

27.

Production of amino acids - Genetic and metabolic engineering approaches.

Lee JH, Wendisch VF.

Bioresour Technol. 2017 Dec;245(Pt B):1575-1587. doi: 10.1016/j.biortech.2017.05.065. Epub 2017 May 15. Review.

PMID:
28552565
28.

A new metabolic route for the fermentative production of 5-aminovalerate from glucose and alternative carbon sources.

Jorge JMP, Pérez-García F, Wendisch VF.

Bioresour Technol. 2017 Dec;245(Pt B):1701-1709. doi: 10.1016/j.biortech.2017.04.108. Epub 2017 Apr 29.

PMID:
28522202
29.

Isoprenoid Pyrophosphate-Dependent Transcriptional Regulation of Carotenogenesis in Corynebacterium glutamicum.

Henke NA, Heider SAE, Hannibal S, Wendisch VF, Peters-Wendisch P.

Front Microbiol. 2017 Apr 24;8:633. doi: 10.3389/fmicb.2017.00633. eCollection 2017.

30.

Improved fermentative production of the compatible solute ectoine by Corynebacterium glutamicum from glucose and alternative carbon sources.

Pérez-García F, Ziert C, Risse JM, Wendisch VF.

J Biotechnol. 2017 Sep 20;258:59-68. doi: 10.1016/j.jbiotec.2017.04.039. Epub 2017 May 3.

PMID:
28478080
31.

Fermentative production of L-pipecolic acid from glucose and alternative carbon sources.

Pérez-García F, Max Risse J, Friehs K, Wendisch VF.

Biotechnol J. 2017 Jul;12(7). doi: 10.1002/biot.201600646. Epub 2017 Mar 9.

PMID:
28169491
32.

l-lysine production by Bacillus methanolicus: Genome-based mutational analysis and l-lysine secretion engineering.

Nærdal I, Netzer R, Irla M, Krog A, Heggeset TMB, Wendisch VF, Brautaset T.

J Biotechnol. 2017 Feb 20;244:25-33. doi: 10.1016/j.jbiotec.2017.02.001. Epub 2017 Feb 2.

PMID:
28163092
33.

Effects of Kasugamycin on the Translatome of Escherichia coli.

Lange C, Lehr M, Zerulla K, Ludwig P, Schweitzer J, Polen T, Wendisch VF, Soppa J.

PLoS One. 2017 Jan 12;12(1):e0168143. doi: 10.1371/journal.pone.0168143. eCollection 2017.

34.

Magnesium aminoclay-based transformation of Paenibacillus riograndensis and Paenibacillus polymyxa and development of tools for gene expression.

Brito LF, Irla M, Walter T, Wendisch VF.

Appl Microbiol Biotechnol. 2017 Jan;101(2):735-747. doi: 10.1007/s00253-016-7999-1. Epub 2016 Nov 23.

PMID:
27878581
35.

Microbial Production of Amino Acid-Related Compounds.

Wendisch VF.

Adv Biochem Eng Biotechnol. 2017;159:255-269. doi: 10.1007/10_2016_34. Review.

PMID:
27872963
36.

Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass.

Lee JH, Wendisch VF.

J Biotechnol. 2017 Sep 10;257:211-221. doi: 10.1016/j.jbiotec.2016.11.016. Epub 2016 Nov 18. Review.

PMID:
27871872
37.

Improved fermentative production of gamma-aminobutyric acid via the putrescine route: Systems metabolic engineering for production from glucose, amino sugars, and xylose.

Jorge JM, Nguyen AQ, Pérez-García F, Kind S, Wendisch VF.

Biotechnol Bioeng. 2017 Apr;114(4):862-873. doi: 10.1002/bit.26211. Epub 2016 Nov 7.

PMID:
27800627
38.

A new metabolic route for the production of gamma-aminobutyric acid by Corynebacterium glutamicum from glucose.

Jorge JM, Leggewie C, Wendisch VF.

Amino Acids. 2016 Nov;48(11):2519-2531. Epub 2016 Jun 11.

PMID:
27289384
39.

Ciprofloxacin triggered glutamate production by Corynebacterium glutamicum.

Lubitz D, Wendisch VF.

BMC Microbiol. 2016 Oct 7;16(1):235.

40.
41.

Light-Controlled Cell Factories: Employing Photocaged Isopropyl-β-d-Thiogalactopyranoside for Light-Mediated Optimization of lac Promoter-Based Gene Expression and (+)-Valencene Biosynthesis in Corynebacterium glutamicum.

Binder D, Frohwitter J, Mahr R, Bier C, Grünberger A, Loeschcke A, Peters-Wendisch P, Kohlheyer D, Pietruszka J, Frunzke J, Jaeger KE, Wendisch VF, Drepper T.

Appl Environ Microbiol. 2016 Sep 30;82(20):6141-6149. Print 2016 Oct 15.

42.

Corynebacterium glutamicum possesses β-N-acetylglucosaminidase.

Matano C, Kolkenbrock S, Hamer SN, Sgobba E, Moerschbacher BM, Wendisch VF.

BMC Microbiol. 2016 Aug 5;16(1):177. doi: 10.1186/s12866-016-0795-3.

43.

The flexible feedstock concept in Industrial Biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources.

Wendisch VF, Brito LF, Gil Lopez M, Hennig G, Pfeifenschneider J, Sgobba E, Veldmann KH.

J Biotechnol. 2016 Sep 20;234:139-157. doi: 10.1016/j.jbiotec.2016.07.022. Epub 2016 Aug 2. Review.

PMID:
27491712
44.

Production of the Marine Carotenoid Astaxanthin by Metabolically Engineered Corynebacterium glutamicum.

Henke NA, Heider SA, Peters-Wendisch P, Wendisch VF.

Mar Drugs. 2016 Jun 30;14(7). pii: E124. doi: 10.3390/md14070124.

45.

Roles of export genes cgmA and lysE for the production of L-arginine and L-citrulline by Corynebacterium glutamicum.

Lubitz D, Jorge JM, Pérez-García F, Taniguchi H, Wendisch VF.

Appl Microbiol Biotechnol. 2016 Oct;100(19):8465-74. doi: 10.1007/s00253-016-7695-1. Epub 2016 Jun 27.

PMID:
27350619
46.

Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid.

Pérez-García F, Peters-Wendisch P, Wendisch VF.

Appl Microbiol Biotechnol. 2016 Sep;100(18):8075-90. doi: 10.1007/s00253-016-7682-6. Epub 2016 Jun 27.

PMID:
27345060
47.

Transcription of Sialic Acid Catabolism Genes in Corynebacterium glutamicum Is Subject to Catabolite Repression and Control by the Transcriptional Repressor NanR.

Uhde A, Brühl N, Goldbeck O, Matano C, Gurow O, Rückert C, Marin K, Wendisch VF, Krämer R, Seibold GM.

J Bacteriol. 2016 Jul 28;198(16):2204-18. doi: 10.1128/JB.00820-15. Print 2016 Aug 15.

48.

Engineering of Corynebacterium glutamicum for xylitol production from lignocellulosic pentose sugars.

Dhar KS, Wendisch VF, Nampoothiri KM.

J Biotechnol. 2016 Jul 20;230:63-71. doi: 10.1016/j.jbiotec.2016.05.011. Epub 2016 May 13.

PMID:
27184428
49.

Updates on industrial production of amino acids using Corynebacterium glutamicum.

Wendisch VF, Jorge JMP, Pérez-García F, Sgobba E.

World J Microbiol Biotechnol. 2016 Jun;32(6):105. doi: 10.1007/s11274-016-2060-1. Epub 2016 Apr 27. Review.

PMID:
27116971
50.

Co-expression of endoglucanase and β-glucosidase in Corynebacterium glutamicum DM1729 towards direct lysine fermentation from cellulose.

Anusree M, Wendisch VF, Nampoothiri KM.

Bioresour Technol. 2016 Aug;213:239-244. doi: 10.1016/j.biortech.2016.03.019. Epub 2016 Mar 8.

PMID:
27020126

Supplemental Content

Loading ...
Support Center