Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 20

1.

Genotyping-by-sequencing and SNP-arrays are complementary for detecting quantitative trait loci by tagging different haplotypes in association studies.

Negro SS, Millet EJ, Madur D, Bauland C, Combes V, Welcker C, Tardieu F, Charcosset A, Nicolas SD.

BMC Plant Biol. 2019 Jul 16;19(1):318. doi: 10.1186/s12870-019-1926-4.

2.

Genomic prediction of maize yield across European environmental conditions.

Millet EJ, Kruijer W, Coupel-Ledru A, Alvarez Prado S, Cabrera-Bosquet L, Lacube S, Charcosset A, Welcker C, van Eeuwijk F, Tardieu F.

Nat Genet. 2019 Jun;51(6):952-956. doi: 10.1038/s41588-019-0414-y. Epub 2019 May 20.

PMID:
31110353
3.

To clean or not to clean phenotypic datasets for outlier plants in genetic analyses?

Alvarez Prado S, Sanchez I, Cabrera-Bosquet L, Grau A, Welcker C, Tardieu F, Hilgert N.

J Exp Bot. 2019 Aug 7;70(15):3693-3698. doi: 10.1093/jxb/erz191.

4.

What is cost-efficient phenotyping? Optimizing costs for different scenarios.

Reynolds D, Baret F, Welcker C, Bostrom A, Ball J, Cellini F, Lorence A, Chawade A, Khafif M, Noshita K, Mueller-Linow M, Zhou J, Tardieu F.

Plant Sci. 2019 May;282:14-22. doi: 10.1016/j.plantsci.2018.06.015. Epub 2018 Jul 26.

PMID:
31003607
5.

Changes in the vertical distribution of leaf area enhanced light interception efficiency in maize over generations of selection.

Perez RPA, Fournier C, Cabrera-Bosquet L, Artzet S, Pradal C, Brichet N, Chen TW, Chapuis R, Welcker C, Tardieu F.

Plant Cell Environ. 2019 Jul;42(7):2105-2119. doi: 10.1111/pce.13539. Epub 2019 Apr 17.

PMID:
30801738
6.

Maize yields over Europe may increase in spite of climate change, with an appropriate use of the genetic variability of flowering time.

Parent B, Leclere M, Lacube S, Semenov MA, Welcker C, Martre P, Tardieu F.

Proc Natl Acad Sci U S A. 2018 Oct 16;115(42):10642-10647. doi: 10.1073/pnas.1720716115. Epub 2018 Oct 1.

7.

Carbon isotope composition, water use efficiency, and drought sensitivity are controlled by a common genomic segment in maize.

Avramova V, Meziane A, Bauer E, Blankenagel S, Eggels S, Gresset S, Grill E, Niculaes C, Ouzunova M, Poppenberger B, Presterl T, Rozhon W, Welcker C, Yang Z, Tardieu F, Schön CC.

Theor Appl Genet. 2019 Jan;132(1):53-63. doi: 10.1007/s00122-018-3193-4. Epub 2018 Sep 22.

8.

A robot-assisted imaging pipeline for tracking the growths of maize ear and silks in a high-throughput phenotyping platform.

Brichet N, Fournier C, Turc O, Strauss O, Artzet S, Pradal C, Welcker C, Tardieu F, Cabrera-Bosquet L.

Plant Methods. 2017 Nov 8;13:96. doi: 10.1186/s13007-017-0246-7. eCollection 2017.

9.

Phenomics allows identification of genomic regions affecting maize stomatal conductance with conditional effects of water deficit and evaporative demand.

Prado SA, Cabrera-Bosquet L, Grau A, Coupel-Ledru A, Millet EJ, Welcker C, Tardieu F.

Plant Cell Environ. 2018 Feb;41(2):314-326. doi: 10.1111/pce.13083. Epub 2017 Dec 11.

PMID:
29044609
10.

Testing the link between genome size and growth rate in maize.

Tenaillon MI, Manicacci D, Nicolas SD, Tardieu F, Welcker C.

PeerJ. 2016 Sep 7;4:e2408. doi: 10.7717/peerj.2408. eCollection 2016.

11.

Genome-Wide Analysis of Yield in Europe: Allelic Effects Vary with Drought and Heat Scenarios.

Millet EJ, Welcker C, Kruijer W, Negro S, Coupel-Ledru A, Nicolas SD, Laborde J, Bauland C, Praud S, Ranc N, Presterl T, Tuberosa R, Bedo Z, Draye X, Usadel B, Charcosset A, Van Eeuwijk F, Tardieu F.

Plant Physiol. 2016 Oct;172(2):749-764. Epub 2016 Jul 19.

12.

The growth of vegetative and reproductive structures (leaves and silks) respond similarly to hydraulic cues in maize.

Turc O, Bouteillé M, Fuad-Hassan A, Welcker C, Tardieu F.

New Phytol. 2016 Oct;212(2):377-88. doi: 10.1111/nph.14053. Epub 2016 Jul 12.

13.

High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform.

Cabrera-Bosquet L, Fournier C, Brichet N, Welcker C, Suard B, Tardieu F.

New Phytol. 2016 Oct;212(1):269-81. doi: 10.1111/nph.14027. Epub 2016 Jun 3.

14.

Genetic and physiological controls of growth under water deficit.

Tardieu F, Parent B, Caldeira CF, Welcker C.

Plant Physiol. 2014 Apr;164(4):1628-35. doi: 10.1104/pp.113.233353. Epub 2014 Feb 25. Review.

15.

The growths of leaves, shoots, roots and reproductive organs partly share their genetic control in maize plants.

Dignat G, Welcker C, Sawkins M, Ribaut JM, Tardieu F.

Plant Cell Environ. 2013 Jun;36(6):1105-19. doi: 10.1111/pce.12045. Epub 2013 Jan 7.

16.

A common genetic determinism for sensitivities to soil water deficit and evaporative demand: meta-analysis of quantitative trait Loci and introgression lines of maize.

Welcker C, Sadok W, Dignat G, Renault M, Salvi S, Charcosset A, Tardieu F.

Plant Physiol. 2011 Oct;157(2):718-29. doi: 10.1104/pp.111.176479. Epub 2011 Jul 27.

17.

Simulating the yield impacts of organ-level quantitative trait loci associated with drought response in maize: a "gene-to-phenotype" modeling approach.

Chenu K, Chapman SC, Tardieu F, McLean G, Welcker C, Hammer GL.

Genetics. 2009 Dec;183(4):1507-23. doi: 10.1534/genetics.109.105429. Epub 2009 Sep 28.

18.

Leaf growth rate per unit thermal time follows QTL-dependent daily patterns in hundreds of maize lines under naturally fluctuating conditions.

Sadok W, Naudin P, Boussuge B, Muller B, Welcker C, Tardieu F.

Plant Cell Environ. 2007 Feb;30(2):135-46.

19.
20.

Maize introduction into Europe: the history reviewed in the light of molecular data.

Rebourg C, Chastanet M, Gouesnard B, Welcker C, Dubreuil P, Charcosset A.

Theor Appl Genet. 2003 Mar;106(5):895-903. Epub 2002 Nov 27.

PMID:
12647065

Supplemental Content

Loading ...
Support Center