Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 44

1.

Macromolecular Assemblies of the Mammalian Circadian Clock.

Aryal RP, Kwak PB, Tamayo AG, Gebert M, Chiu PL, Walz T, Weitz CJ.

Mol Cell. 2017 Sep 7;67(5):770-782.e6. doi: 10.1016/j.molcel.2017.07.017.

2.

Histone monoubiquitination by Clock-Bmal1 complex marks Per1 and Per2 genes for circadian feedback.

Tamayo AG, Duong HA, Robles MS, Mann M, Weitz CJ.

Nat Struct Mol Biol. 2015 Oct;22(10):759-66. doi: 10.1038/nsmb.3076. Epub 2015 Aug 31.

3.

Single-cell analysis of circadian dynamics in tissue explants.

Lande-Diner L, Stewart-Ornstein J, Weitz CJ, Lahav G.

Mol Biol Cell. 2015 Nov 5;26(22):3940-5. doi: 10.1091/mbc.E15-06-0403. Epub 2015 Aug 12.

4.

Purification and analysis of PERIOD protein complexes of the mammalian circadian clock.

Kim JY, Kwak PB, Gebert M, Duong HA, Weitz CJ.

Methods Enzymol. 2015;551:197-210. doi: 10.1016/bs.mie.2014.10.013. Epub 2014 Dec 26.

PMID:
25662458
5.

Specificity in circadian clock feedback from targeted reconstitution of the NuRD corepressor.

Kim JY, Kwak PB, Weitz CJ.

Mol Cell. 2014 Dec 18;56(6):738-48. doi: 10.1016/j.molcel.2014.10.017. Epub 2014 Nov 20.

6.

Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes.

Duong HA, Weitz CJ.

Nat Struct Mol Biol. 2014 Feb;21(2):126-32. doi: 10.1038/nsmb.2746. Epub 2014 Jan 12.

7.

A positive feedback loop links circadian clock factor CLOCK-BMAL1 to the basic transcriptional machinery.

Lande-Diner L, Boyault C, Kim JY, Weitz CJ.

Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16021-6. doi: 10.1073/pnas.1305980110. Epub 2013 Sep 16.

8.

Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex.

Padmanabhan K, Robles MS, Westerling T, Weitz CJ.

Science. 2012 Aug 3;337(6094):599-602. doi: 10.1126/science.1221592. Epub 2012 Jul 5.

9.

A molecular mechanism for circadian clock negative feedback.

Duong HA, Robles MS, Knutti D, Weitz CJ.

Science. 2011 Jun 17;332(6036):1436-9. doi: 10.1126/science.1196766.

10.

An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice.

Sadacca LA, Lamia KA, deLemos AS, Blum B, Weitz CJ.

Diabetologia. 2011 Jan;54(1):120-4. doi: 10.1007/s00125-010-1920-8. Epub 2010 Oct 3.

11.

Identification of RACK1 and protein kinase Calpha as integral components of the mammalian circadian clock.

Robles MS, Boyault C, Knutti D, Padmanabhan K, Weitz CJ.

Science. 2010 Jan 22;327(5964):463-6. doi: 10.1126/science.1180067.

12.

Excitatory actions of noradrenaline and metabotropic glutamate receptor activation in granule cells of the accessory olfactory bulb.

Smith RS, Weitz CJ, Araneda RC.

J Neurophysiol. 2009 Aug;102(2):1103-14. doi: 10.1152/jn.91093.2008. Epub 2009 May 27.

13.

Daily rhythms of food-anticipatory behavioral activity do not require the known circadian clock.

Storch KF, Weitz CJ.

Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6808-13. doi: 10.1073/pnas.0902063106. Epub 2009 Apr 6.

14.

Physiological significance of a peripheral tissue circadian clock.

Lamia KA, Storch KF, Weitz CJ.

Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):15172-7. doi: 10.1073/pnas.0806717105. Epub 2008 Sep 8.

15.

Physiological importance of a circadian clock outside the suprachiasmatic nucleus.

Storch KF, Paz C, Signorovitch J, Raviola E, Pawlyk B, Li T, Weitz CJ.

Cold Spring Harb Symp Quant Biol. 2007;72:307-18. doi: 10.1101/sqb.2007.72.053.

PMID:
18419288
16.

Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information.

Storch KF, Paz C, Signorovitch J, Raviola E, Pawlyk B, Li T, Weitz CJ.

Cell. 2007 Aug 24;130(4):730-741. doi: 10.1016/j.cell.2007.06.045.

17.

CIPC is a mammalian circadian clock protein without invertebrate homologues.

Zhao WN, Malinin N, Yang FC, Staknis D, Gekakis N, Maier B, Reischl S, Kramer A, Weitz CJ.

Nat Cell Biol. 2007 Mar;9(3):268-75. Epub 2007 Feb 18.

PMID:
17310242
18.

Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation.

Zhou Z, Hong EJ, Cohen S, Zhao WN, Ho HY, Schmidt L, Chen WG, Lin Y, Savner E, Griffith EC, Hu L, Steen JA, Weitz CJ, Greenberg ME.

Neuron. 2006 Oct 19;52(2):255-69.

19.

A role for cardiotrophin-like cytokine in the circadian control of mammalian locomotor activity.

Kraves S, Weitz CJ.

Nat Neurosci. 2006 Feb;9(2):212-9. Epub 2006 Jan 22.

PMID:
16429135
20.

A screen for secreted factors of the suprachiasmatic nucleus.

Kramer A, Yang FC, Kraves S, Weitz CJ.

Methods Enzymol. 2005;393:645-63.

PMID:
15817317
21.

GoSurfer: a graphical interactive tool for comparative analysis of large gene sets in Gene Ontology space.

Zhong S, Storch KF, Lipan O, Kao MC, Weitz CJ, Wong WH.

Appl Bioinformatics. 2004;3(4):261-4.

PMID:
15702958
22.

Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signalling.

Kramer A, Yang FC, Snodgrass P, Li X, Scammell TE, Davis FC, Weitz CJ.

Novartis Found Symp. 2003;253:250-62; discussion 102-9, 263-6, 281-4.

PMID:
14712926
23.

Extensive and divergent circadian gene expression in liver and heart.

Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, Weitz CJ.

Nature. 2002 May 2;417(6884):78-83. Epub 2002 Apr 21. Erratum in: Nature 2002 Aug 8;418(6898):665.

PMID:
11967526
24.

Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling.

Kramer A, Yang FC, Snodgrass P, Li X, Scammell TE, Davis FC, Weitz CJ.

Science. 2001 Dec 21;294(5551):2511-5.

25.

Light-independent role of CRY1 and CRY2 in the mammalian circadian clock.

Griffin EA Jr, Staknis D, Weitz CJ.

Science. 1999 Oct 22;286(5440):768-71.

26.

Light-dependent sequestration of TIMELESS by CRYPTOCHROME.

Ceriani MF, Darlington TK, Staknis D, Más P, Petti AA, Weitz CJ, Kay SA.

Science. 1999 Jul 23;285(5427):553-6.

27.

Mammalian circadian autoregulatory loop: a timeless ortholog and mPer1 interact and negatively regulate CLOCK-BMAL1-induced transcription.

Sangoram AM, Saez L, Antoch MP, Gekakis N, Staknis D, Whiteley A, Fruechte EM, Vitaterna MH, Shimomura K, King DP, Young MW, Weitz CJ, Takahashi JS.

Neuron. 1998 Nov;21(5):1101-13.

28.

Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim.

Darlington TK, Wager-Smith K, Ceriani MF, Staknis D, Gekakis N, Steeves TD, Weitz CJ, Takahashi JS, Kay SA.

Science. 1998 Jun 5;280(5369):1599-603.

29.

Role of the CLOCK protein in the mammalian circadian mechanism.

Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, Takahashi JS, Weitz CJ.

Science. 1998 Jun 5;280(5369):1564-9.

30.

A screen for genes induced in the suprachiasmatic nucleus by light.

Morris ME, Viswanathan N, Kuhlman S, Davis FC, Weitz CJ.

Science. 1998 Mar 6;279(5356):1544-7.

31.

Circadian timekeeping: loops and layers of transcriptional control.

Weitz CJ.

Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14308-9. No abstract available.

32.

Isolation of timeless by PER protein interaction: defective interaction between timeless protein and long-period mutant PERL.

Gekakis N, Saez L, Delahaye-Brown AM, Myers MP, Sehgal A, Young MW, Weitz CJ.

Science. 1995 Nov 3;270(5237):811-5.

PMID:
7481773
34.

Human tritanopia associated with a third amino acid substitution in the blue-sensitive visual pigment.

Weitz CJ, Went LN, Nathans J.

Am J Hum Genet. 1992 Aug;51(2):444-6. No abstract available.

36.

Human tritanopia associated with two amino acid substitutions in the blue-sensitive opsin.

Weitz CJ, Miyake Y, Shinzato K, Montag E, Zrenner E, Went LN, Nathans J.

Am J Hum Genet. 1992 Mar;50(3):498-507.

37.

Molecular genetics of human visual pigments.

Nathans J, Merbs SL, Sung CH, Weitz CJ, Wang Y.

Annu Rev Genet. 1992;26:403-24. Review. No abstract available.

PMID:
1482119
38.

Visual pigments and inherited variation in human vision.

Nathans J, Sung CH, Weitz CJ, Davenport CM, Merbs SL, Wang Y.

Soc Gen Physiol Ser. 1992;47:109-31. Review. No abstract available.

PMID:
1369758
39.

Production of bovine rhodopsin by mammalian cell lines expressing cloned cDNA: spectrophotometry and subcellular localization.

Nathans J, Weitz CJ, Agarwal N, Nir I, Papermaster DS.

Vision Res. 1989;29(8):907-14.

PMID:
2629206
40.

6-Acetylmorphine: a natural product present in mammalian brain.

Weitz CJ, Lowney LI, Faull KF, Feistner G, Goldstein A.

Proc Natl Acad Sci U S A. 1988 Jul;85(14):5335-8.

41.

Synthesis of the skeleton of the morphine molecule by mammalian liver.

Weitz CJ, Faull KF, Goldstein A.

Nature. 1987 Dec 17-23;330(6149):674-7.

PMID:
3683586
42.

Morphine and codeine from mammalian brain.

Weitz CJ, Lowney LI, Faull KF, Feistner G, Goldstein A.

Proc Natl Acad Sci U S A. 1986 Dec;83(24):9784-8.

43.

Central error-correcting behavior in schizophrenia and depression.

Malenka RC, Angel RW, Thiemann S, Weitz CJ, Berger PA.

Biol Psychiatry. 1986 Mar;21(3):263-73.

PMID:
3947708
44.

Morphine and other opiates from beef brain and adrenal.

Goldstein A, Barrett RW, James IF, Lowney LI, Weitz CJ, Knipmeyer LL, Rapoport H.

Proc Natl Acad Sci U S A. 1985 Aug;82(15):5203-7.

Supplemental Content

Loading ...
Support Center