Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 61

1.

Creating fluorescent quantum defects in carbon nanotubes using hypochlorite and light.

Lin CW, Bachilo SM, Zheng Y, Tsedev U, Huang S, Weisman RB, Belcher AM.

Nat Commun. 2019 Jun 28;10(1):2874. doi: 10.1038/s41467-019-10917-3.

2.

Controlled Patterning of Carbon Nanotube Energy Levels by Covalent DNA Functionalization.

Zheng Y, Bachilo SM, Weisman RB.

ACS Nano. 2019 Jul 23;13(7):8222-8228. doi: 10.1021/acsnano.9b03488. Epub 2019 Jun 19.

PMID:
31244048
3.

Enantiomers of Single-Wall Carbon Nanotubes Show Distinct Coating Displacement Kinetics.

Zheng Y, Bachilo SM, Weisman RB.

J Phys Chem Lett. 2018 Jul 5;9(13):3793-3797. doi: 10.1021/acs.jpclett.8b01683. Epub 2018 Jun 27.

PMID:
29939759
4.

In Vivo Optical Detection and Spectral Triangulation of Carbon Nanotubes.

Lin CW, Yang H, Sanchez SR, Mao W, Pang L, Beckingham KM, Bast RC Jr, Weisman RB.

ACS Appl Mater Interfaces. 2017 Dec 6;9(48):41680-41690. doi: 10.1021/acsami.7b12916. Epub 2017 Nov 27.

PMID:
29131572
5.

Skewness Analysis in Variance Spectroscopy Measures Nanoparticle Individualization.

Sanchez SR, Bachilo SM, Kadria-Vili Y, Weisman RB.

J Phys Chem Lett. 2017 Jul 6;8(13):2924-2929. doi: 10.1021/acs.jpclett.7b01184. Epub 2017 Jun 14.

PMID:
28604010
6.

Quenching of Single-Walled Carbon Nanotube Fluorescence by Dissolved Oxygen Reveals Selective Single-Stranded DNA Affinities.

Zheng Y, Bachilo SM, Weisman RB.

J Phys Chem Lett. 2017 May 4;8(9):1952-1955. doi: 10.1021/acs.jpclett.7b00583. Epub 2017 Apr 18.

PMID:
28406641
7.

In vivo detection of single-walled carbon nanotubes: progress and challenges.

Lin CW, Weisman RB.

Nanomedicine (Lond). 2016 Nov;11(22):2885-2888. Epub 2016 Oct 28. No abstract available.

PMID:
27790926
8.

(n,m)-Specific Absorption Cross Sections of Single-Walled Carbon Nanotubes Measured by Variance Spectroscopy.

Sanchez SR, Bachilo SM, Kadria-Vili Y, Lin CW, Weisman RB.

Nano Lett. 2016 Nov 9;16(11):6903-6909. Epub 2016 Oct 24.

9.

Variance Spectroscopy.

Streit JK, Bachilo SM, Sanchez SR, Lin CW, Weisman RB.

J Phys Chem Lett. 2015 Oct 1;6(19):3976-81. doi: 10.1021/acs.jpclett.5b01835. Epub 2015 Sep 22.

PMID:
26722902
10.

Resonance Raman Optical Activity Spectra of Single-Walled Carbon Nanotube Enantiomers.

Magg M, Kadria-Vili Y, Oulevey P, Weisman RB, Bürgi T.

J Phys Chem Lett. 2016 Jan 21;7(2):221-5. doi: 10.1021/acs.jpclett.5b02612. Epub 2015 Dec 31.

PMID:
26709444
11.

Structure-Dependent Thermal Defunctionalization of Single-Walled Carbon Nanotubes.

Ghosh S, Wei F, Bachilo SM, Hauge RH, Billups WE, Weisman RB.

ACS Nano. 2015 Jun 23;9(6):6324-32. doi: 10.1021/acsnano.5b01846. Epub 2015 Jun 9.

PMID:
26027688
12.

High precision fractionator for use with density gradient ultracentrifugation.

Kadria-Vili Y, Canning G, Bachilo SM, Weisman RB.

Anal Chem. 2014 Nov 18;86(22):11018-23. doi: 10.1021/ac502365w. Epub 2014 Oct 31.

PMID:
25325436
13.

Directly measured optical absorption cross sections for structure-selected single-walled carbon nanotubes.

Streit JK, Bachilo SM, Ghosh S, Lin CW, Weisman RB.

Nano Lett. 2014 Mar 12;14(3):1530-6. doi: 10.1021/nl404791y. Epub 2014 Feb 10.

PMID:
24502235
14.

Enabling in vivo measurements of nanoparticle concentrations with three-dimensional optoacoustic tomography.

Tsyboulski DA, Liopo AV, Su R, Ermilov SA, Bachilo SM, Weisman RB, Oraevsky AA.

J Biophotonics. 2014 Aug;7(8):581-8. doi: 10.1002/jbio.201200233. Epub 2013 Apr 2.

15.

Chromatic aberration short-wave infrared spectroscopy: nanoparticle spectra without a spectrometer.

Streit JK, Bachilo SM, Weisman RB.

Anal Chem. 2013 Feb 5;85(3):1337-41. doi: 10.1021/ac303713z. Epub 2013 Jan 15.

PMID:
23286305
16.

Measuring single-walled carbon nanotube length distributions from diffusional trajectories.

Streit JK, Bachilo SM, Naumov AV, Khripin C, Zheng M, Weisman RB.

ACS Nano. 2012 Sep 25;6(9):8424-31. Epub 2012 Sep 6.

PMID:
22924324
17.

Strain paint: noncontact strain measurement using single-walled carbon nanotube composite coatings.

Withey PA, Vemuru VS, Bachilo SM, Nagarajaiah S, Weisman RB.

Nano Lett. 2012 Jul 11;12(7):3497-500. doi: 10.1021/nl301008m. Epub 2012 Jun 15.

PMID:
22694748
18.

Films of bare single-walled carbon nanotubes from superacids with tailored electronic and photoluminescence properties.

Saha A, Ghosh S, Weisman RB, Martí AA.

ACS Nano. 2012 Jun 26;6(6):5727-34. doi: 10.1021/nn302092b. Epub 2012 Jun 8.

PMID:
22681339
19.

Quasi-molecular fluorescence from graphene oxide.

Galande C, Mohite AD, Naumov AV, Gao W, Ci L, Ajayan A, Gao H, Srivastava A, Weisman RB, Ajayan PM.

Sci Rep. 2011;1:85. doi: 10.1038/srep00085. Epub 2011 Sep 8.

20.

Carbon Nanotubes: Solution for the Therapeutic Delivery of siRNA?

Kirkpatrick DL, Weiss M, Naumov A, Bartholomeusz G, Weisman RB, Gliko O.

Materials (Basel). 2012 Feb 13;5(2):278-301. doi: 10.3390/ma5020278.

21.

Evidence for long-lived, optically generated quenchers of excitons in single-walled carbon nanotubes.

Siitonen AJ, Bachilo SM, Tsyboulski DA, Weisman RB.

Nano Lett. 2012 Jan 11;12(1):33-8. doi: 10.1021/nl2028238. Epub 2011 Dec 9.

PMID:
22142025
22.

Length- and defect-dependent fluorescence efficiencies of individual single-walled carbon nanotubes.

Cherukuri TK, Tsyboulski DA, Weisman RB.

ACS Nano. 2012 Jan 24;6(1):843-50. doi: 10.1021/nn2043516. Epub 2011 Dec 12.

PMID:
22128755
23.

Efficient spectrofluorimetric analysis of single-walled carbon nanotube samples.

Rocha JD, Bachilo SM, Ghosh S, Arepalli S, Weisman RB.

Anal Chem. 2011 Oct 1;83(19):7431-7. doi: 10.1021/ac2014788. Epub 2011 Sep 9.

PMID:
21866945
24.

Analyzing absorption backgrounds in single-walled carbon nanotube spectra.

Naumov AV, Ghosh S, Tsyboulski DA, Bachilo SM, Weisman RB.

ACS Nano. 2011 Mar 22;5(3):1639-48. doi: 10.1021/nn1035922. Epub 2011 Feb 22.

PMID:
21341755
25.

Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes.

Ghosh S, Bachilo SM, Simonette RA, Beckingham KM, Weisman RB.

Science. 2010 Dec 17;330(6011):1656-9. doi: 10.1126/science.1196382. Epub 2010 Nov 25.

26.

Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation.

Ghosh S, Bachilo SM, Weisman RB.

Nat Nanotechnol. 2010 Jun;5(6):443-50. doi: 10.1038/nnano.2010.68. Epub 2010 May 9.

PMID:
20453856
27.

Surfactant-dependent exciton mobility in single-walled carbon nanotubes studied by single-molecule reactions.

Siitonen AJ, Tsyboulski DA, Bachilo SM, Weisman RB.

Nano Lett. 2010 May 12;10(5):1595-9. doi: 10.1021/nl9039845.

PMID:
20377240
28.

Enrichment of armchair carbon nanotubes via density gradient ultracentrifugation: Raman spectroscopy evidence.

Hároz EH, Rice WD, Lu BY, Ghosh S, Hauge RH, Weisman RB, Doorn SK, Kono J.

ACS Nano. 2010 Apr 27;4(4):1955-62. doi: 10.1021/nn901908n.

PMID:
20302343
29.

In Vivo Therapeutic Silencing of Hypoxia-Inducible Factor 1 Alpha (HIF-1α) Using Single-Walled Carbon Nanotubes Noncovalently Coated with siRNA.

Bartholomeusz G, Cherukuri P, Kingston J, Cognet L, Lemos R, Leeuw TK, Gumbiner-Russo L, Weisman RB, Powis G.

Nano Res. 2009 Apr 17;2(4):279-291.

30.

Fluorimetric characterization of single-walled carbon nanotubes.

Weisman RB.

Anal Bioanal Chem. 2010 Feb;396(3):1015-23. doi: 10.1007/s00216-009-3062-8. Epub 2009 Sep 8.

PMID:
19763551
31.

Diameter-dependent bending dynamics of single-walled carbon nanotubes in liquids.

Fakhri N, Tsyboulski DA, Cognet L, Weisman RB, Pasquali M.

Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14219-23. doi: 10.1073/pnas.0904148106. Epub 2009 Aug 12.

32.

Do inner shells of double-walled carbon nanotubes fluoresce?

Tsyboulski DA, Hou Y, Fakhri N, Ghosh S, Zhang R, Bachilo SM, Pasquali M, Chen L, Liu J, Weisman RB.

Nano Lett. 2009 Sep;9(9):3282-9. doi: 10.1021/nl901550r.

PMID:
19653638
33.

Quantifying the semiconducting fraction in single-walled carbon nanotube samples through comparative atomic force and photoluminescence microscopies.

Naumov AV, Kuznetsov OA, Harutyunyan AR, Green AA, Hersam MC, Resasco DE, Nikolaev PN, Weisman RB.

Nano Lett. 2009 Sep;9(9):3203-8. doi: 10.1021/nl9014342.

PMID:
19640001
34.

Multidomain peptides as single-walled carbon nanotube surfactants in cell culture.

Bakota EL, Aulisa L, Tsyboulski DA, Weisman RB, Hartgerink JD.

Biomacromolecules. 2009 Aug 10;10(8):2201-6. doi: 10.1021/bm900382a.

35.

Translational and rotational dynamics of individual single-walled carbon nanotubes in aqueous suspension.

Tsyboulski DA, Bachilo SM, Kolomeisky AB, Weisman RB.

ACS Nano. 2008 Sep 23;2(9):1770-6. doi: 10.1021/nn800364r.

PMID:
19206415
36.

Chirality-resolved length analysis of single-walled carbon nanotube samples through shear-aligned photoluminescence anisotropy.

Casey JP, Bachilo SM, Moran CH, Weisman RB.

ACS Nano. 2008 Aug;2(8):1738-46. doi: 10.1021/nn800351n.

PMID:
19206379
37.

Self-assembling peptide coatings designed for highly luminescent suspension of single-walled carbon nanotubes.

Tsyboulski DA, Bakota EL, Witus LS, Rocha JD, Hartgerink JD, Weisman RB.

J Am Chem Soc. 2008 Dec 17;130(50):17134-40. doi: 10.1021/ja807224x.

38.

Structure-dependent reactivity of semiconducting single-walled carbon nanotubes with benzenediazonium salts.

Doyle CD, Rocha JD, Weisman RB, Tour JM.

J Am Chem Soc. 2008 May 28;130(21):6795-800. doi: 10.1021/ja800198t. Epub 2008 May 3.

PMID:
18454527
39.

Electric field quenching of carbon nanotube photoluminescence.

Naumov AV, Bachilo SM, Tsyboulski DA, Weisman RB.

Nano Lett. 2008 May;8(5):1527-31. doi: 10.1021/nl0800974. Epub 2008 Apr 23.

PMID:
18429639
40.

Strain measurements on individual single-walled carbon nanotubes in a polymer host: structure-dependent spectral shifts and load transfer.

Leeuw TK, Tsyboulski DA, Nikolaev PN, Bachilo SM, Arepalli S, Weisman RB.

Nano Lett. 2008 Mar;8(3):826-31. doi: 10.1021/nl072861c. Epub 2008 Feb 26.

PMID:
18298093
41.

Subdiffraction far-field imaging of luminescent single-walled carbon nanotubes.

Cognet L, Tsyboulski DA, Weisman RB.

Nano Lett. 2008 Feb;8(2):749-53. doi: 10.1021/nl0725300. Epub 2008 Jan 31.

PMID:
18232720
42.

Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field.

Gannon CJ, Cherukuri P, Yakobson BI, Cognet L, Kanzius JS, Kittrell C, Weisman RB, Pasquali M, Schmidt HK, Smalley RE, Curley SA.

Cancer. 2007 Dec 15;110(12):2654-65.

43.

Structure-dependent fluorescence efficiencies of individual single-walled carbon nanotubes.

Tsyboulski DA, Rocha JD, Bachilo SM, Cognet L, Weisman RB.

Nano Lett. 2007 Oct;7(10):3080-5. Epub 2007 Sep 19. Erratum in: Nano Lett. 2008 Apr;8(4):1270.

PMID:
17880144
44.

Single-walled carbon nanotubes in the intact organism: near-IR imaging and biocompatibility studies in Drosophila.

Leeuw TK, Reith RM, Simonette RA, Harden ME, Cherukuri P, Tsyboulski DA, Beckingham KM, Weisman RB.

Nano Lett. 2007 Sep;7(9):2650-4. Epub 2007 Aug 16.

PMID:
17696559
45.

Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions.

Cognet L, Tsyboulski DA, Rocha JD, Doyle CD, Tour JM, Weisman RB.

Science. 2007 Jun 8;316(5830):1465-8.

46.

Absorption spectroscopy of individual single-walled carbon nanotubes.

Berciaud S, Cognet L, Poulin P, Weisman RB, Lounis B.

Nano Lett. 2007 May;7(5):1203-7. Epub 2007 Mar 27.

PMID:
17385932
47.

Determination of exciton-phonon coupling elements in single-walled carbon nanotubes by Raman overtone analysis.

Shreve AP, Haroz EH, Bachilo SM, Weisman RB, Tretiak S, Kilina S, Doorn SK.

Phys Rev Lett. 2007 Jan 19;98(3):037405. Epub 2007 Jan 19.

PMID:
17358727
48.

Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence.

Cherukuri P, Gannon CJ, Leeuw TK, Schmidt HK, Smalley RE, Curley SA, Weisman RB.

Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):18882-6. Epub 2006 Nov 29.

49.

Intense photoluminescence from mixed solutions of C70 and palladium octaethylporphyrin: A supramolecular heavy atom effect.

Tsyboulski DA, Bachilo SM, Weisman RB.

J Phys Chem A. 2006 Sep 21;110(37):10731-6.

PMID:
16970364
50.

Fullerene (C60) immunoconjugates: interaction of water-soluble C60 derivatives with the murine anti-gp240 melanoma antibody.

Ashcroft JM, Tsyboulski DA, Hartman KB, Zakharian TY, Marks JW, Weisman RB, Rosenblum MG, Wilson LJ.

Chem Commun (Camb). 2006 Jul 28;(28):3004-6. Epub 2006 Jun 9.

PMID:
16832518

Supplemental Content

Loading ...
Support Center