Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 16

1.

The ER membrane protein complex interacts cotranslationally to enable biogenesis of multipass membrane proteins.

Shurtleff MJ, Itzhak DN, Hussmann JA, Schirle Oakdale NT, Costa EA, Jonikas M, Weibezahn J, Popova KD, Jan CH, Sinitcyn P, Vembar SS, Hernandez H, Cox J, Burlingame AL, Brodsky JL, Frost A, Borner GH, Weissman JS.

Elife. 2018 May 29;7. pii: e37018. doi: 10.7554/eLife.37018.

2.

A systematic mammalian genetic interaction map reveals pathways underlying ricin susceptibility.

Bassik MC, Kampmann M, Lebbink RJ, Wang S, Hein MY, Poser I, Weibezahn J, Horlbeck MA, Chen S, Mann M, Hyman AA, Leproust EM, McManus MT, Weissman JS.

Cell. 2013 Feb 14;152(4):909-22. doi: 10.1016/j.cell.2013.01.030. Epub 2013 Feb 8.

3.

A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress.

Brandman O, Stewart-Ornstein J, Wong D, Larson A, Williams CC, Li GW, Zhou S, King D, Shen PS, Weibezahn J, Dunn JG, Rouskin S, Inada T, Frost A, Weissman JS.

Cell. 2012 Nov 21;151(5):1042-54. doi: 10.1016/j.cell.2012.10.044.

4.

Functional repurposing revealed by comparing S. pombe and S. cerevisiae genetic interactions.

Frost A, Elgort MG, Brandman O, Ives C, Collins SR, Miller-Vedam L, Weibezahn J, Hein MY, Poser I, Mann M, Hyman AA, Weissman JS.

Cell. 2012 Jun 8;149(6):1339-52. doi: 10.1016/j.cell.2012.04.028.

5.

Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum.

Jonikas MC, Collins SR, Denic V, Oh E, Quan EM, Schmid V, Weibezahn J, Schwappach B, Walter P, Weissman JS, Schuldiner M.

Science. 2009 Mar 27;323(5922):1693-7. doi: 10.1126/science.1167983.

6.

Defining the glycan destruction signal for endoplasmic reticulum-associated degradation.

Quan EM, Kamiya Y, Kamiya D, Denic V, Weibezahn J, Kato K, Weissman JS.

Mol Cell. 2008 Dec 26;32(6):870-7. doi: 10.1016/j.molcel.2008.11.017.

7.

M domains couple the ClpB threading motor with the DnaK chaperone activity.

Haslberger T, Weibezahn J, Zahn R, Lee S, Tsai FT, Bukau B, Mogk A.

Mol Cell. 2007 Jan 26;25(2):247-60.

8.

Novel insights into the mechanism of chaperone-assisted protein disaggregation.

Weibezahn J, Schlieker C, Tessarz P, Mogk A, Bukau B.

Biol Chem. 2005 Aug;386(8):739-44. Review.

PMID:
16201868
9.

Genome-wide mRNA profiling in glucose starved Bacillus subtilis cells.

Koburger T, Weibezahn J, Bernhardt J, Homuth G, Hecker M.

Mol Genet Genomics. 2005 Aug;274(1):1-12. Epub 2005 Apr 5.

PMID:
15809868
10.

Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB.

Weibezahn J, Tessarz P, Schlieker C, Zahn R, Maglica Z, Lee S, Zentgraf H, Weber-Ban EU, Dougan DA, Tsai FT, Mogk A, Bukau B.

Cell. 2004 Nov 24;119(5):653-65.

11.

Substrate recognition by the AAA+ chaperone ClpB.

Schlieker C, Weibezahn J, Patzelt H, Tessarz P, Strub C, Zeth K, Erbse A, Schneider-Mergener J, Chin JW, Schultz PG, Bukau B, Mogk A.

Nat Struct Mol Biol. 2004 Jul;11(7):607-15. Epub 2004 Jun 20.

PMID:
15208691
12.

Broad yet high substrate specificity: the challenge of AAA+ proteins.

Mogk A, Dougan D, Weibezahn J, Schlieker C, Turgay K, Bukau B.

J Struct Biol. 2004 Apr-May;146(1-2):90-8. Review.

PMID:
15037240
13.

Unscrambling an egg: protein disaggregation by AAA+ proteins.

Weibezahn J, Bukau B, Mogk A.

Microb Cell Fact. 2004 Jan 16;3(1):1.

14.

Characterization of a trap mutant of the AAA+ chaperone ClpB.

Weibezahn J, Schlieker C, Bukau B, Mogk A.

J Biol Chem. 2003 Aug 29;278(35):32608-17. Epub 2003 Jun 12.

15.

Roles of individual domains and conserved motifs of the AAA+ chaperone ClpB in oligomerization, ATP hydrolysis, and chaperone activity.

Mogk A, Schlieker C, Strub C, Rist W, Weibezahn J, Bukau B.

J Biol Chem. 2003 May 16;278(20):17615-24. Epub 2003 Mar 6.

Supplemental Content

Loading ...
Support Center