Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 29

1.

Temporal Requirement for Pulmonary Resident and Circulating T Cells during Virulent Francisella tularensis Infection.

Roberts LM, Wehrly TD, Ireland RM, Crane DD, Scott DP, Bosio CM.

J Immunol. 2018 Aug 15;201(4):1186-1193. doi: 10.4049/jimmunol.1800052. Epub 2018 Jul 6.

2.

Unique Francisella Phosphatidylethanolamine Acts as a Potent Anti-Inflammatory Lipid.

Ireland R, Schwarz B, Nardone G, Wehrly TD, Broeckling CD, Chiramel AI, Best SM, Bosio CM.

J Innate Immun. 2018;10(4):291-305. doi: 10.1159/000489504. Epub 2018 Jul 3.

3.

The Ability to Acquire Iron Is Inversely Related to Virulence and the Protective Efficacy of Francisella tularensis Live Vaccine Strain.

Fletcher JR, Crane DD, Wehrly TD, Martens CA, Bosio CM, Jones BD.

Front Microbiol. 2018 Apr 4;9:607. doi: 10.3389/fmicb.2018.00607. eCollection 2018.

4.

Expansion and retention of pulmonary CD4+ T cells after prime boost vaccination correlates with improved longevity and strength of immunity against tularemia.

Roberts LM, Wehrly TD, Crane DD, Bosio CM.

Vaccine. 2017 May 2;35(19):2575-2581. doi: 10.1016/j.vaccine.2017.03.064. Epub 2017 Mar 31.

PMID:
28372827
5.

Inclusion of Epitopes That Expand High-Avidity CD4+ T Cells Transforms Subprotective Vaccines to Efficacious Immunogens against Virulent Francisella tularensis.

Roberts LM, Crane DD, Wehrly TD, Fletcher JR, Jones BD, Bosio CM.

J Immunol. 2016 Oct 1;197(7):2738-47. doi: 10.4049/jimmunol.1600879. Epub 2016 Aug 19.

6.

Successful protection against tularemia in C57BL/6 mice is correlated with expansion of Francisella tularensis-specific effector T cells.

Griffin AJ, Crane DD, Wehrly TD, Bosio CM.

Clin Vaccine Immunol. 2015 Jan;22(1):119-28. doi: 10.1128/CVI.00648-14. Epub 2014 Nov 19.

7.

Mitochondrial ROS potentiates indirect activation of the AIM2 inflammasome.

Crane DD, Bauler TJ, Wehrly TD, Bosio CM.

Front Microbiol. 2014 Aug 20;5:438. doi: 10.3389/fmicb.2014.00438. eCollection 2014.

8.

Virulent Francisella tularensis destabilize host mRNA to rapidly suppress inflammation.

Bauler TJ, Chase JC, Wehrly TD, Bosio CM.

J Innate Immun. 2014;6(6):793-805. doi: 10.1159/000363243. Epub 2014 May 27.

9.

Alternative activation of macrophages and induction of arginase are not components of pathogenesis mediated by Francisella species.

Griffin AJ, Crane DD, Wehrly TD, Scott DP, Bosio CM.

PLoS One. 2013 Dec 6;8(12):e82096. doi: 10.1371/journal.pone.0082096. eCollection 2013.

10.

The Francisella O-antigen mediates survival in the macrophage cytosol via autophagy avoidance.

Case ED, Chong A, Wehrly TD, Hansen B, Child R, Hwang S, Virgin HW, Celli J.

Cell Microbiol. 2014 Jun;16(6):862-77. doi: 10.1111/cmi.12246. Epub 2013 Dec 16.

11.

Brucella modulates secretory trafficking via multiple type IV secretion effector proteins.

Myeni S, Child R, Ng TW, Kupko JJ 3rd, Wehrly TD, Porcella SF, Knodler LA, Celli J.

PLoS Pathog. 2013;9(8):e1003556. doi: 10.1371/journal.ppat.1003556. Epub 2013 Aug 8.

12.

Structure-Function Analysis of DipA, a Francisella tularensis Virulence Factor Required for Intracellular Replication.

Chong A, Child R, Wehrly TD, Rockx-Brouwer D, Qin A, Mann BJ, Celli J.

PLoS One. 2013 Jun 26;8(6):e67965. doi: 10.1371/journal.pone.0067965. Print 2013.

13.

B1a cells enhance susceptibility to infection with virulent Francisella tularensis via modulation of NK/NKT cell responses.

Crane DD, Griffin AJ, Wehrly TD, Bosio CM.

J Immunol. 2013 Mar 15;190(6):2756-66. doi: 10.4049/jimmunol.1202697. Epub 2013 Feb 1.

14.

Cytosolic clearance of replication-deficient mutants reveals Francisella tularensis interactions with the autophagic pathway.

Chong A, Wehrly TD, Child R, Hansen B, Hwang S, Virgin HW, Celli J.

Autophagy. 2012 Sep;8(9):1342-56. doi: 10.4161/auto.20808. Epub 2012 Aug 6.

15.

Low dose vaccination with attenuated Francisella tularensis strain SchuS4 mutants protects against tularemia independent of the route of vaccination.

Rockx-Brouwer D, Chong A, Wehrly TD, Child R, Crane DD, Celli J, Bosio CM.

PLoS One. 2012;7(5):e37752. doi: 10.1371/journal.pone.0037752. Epub 2012 May 25.

16.

Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle.

Starr T, Child R, Wehrly TD, Hansen B, Hwang S, López-Otin C, Virgin HW, Celli J.

Cell Host Microbe. 2012 Jan 19;11(1):33-45. doi: 10.1016/j.chom.2011.12.002.

17.

The Francisella tularensis pathogenicity island encodes a secretion system that is required for phagosome escape and virulence.

Barker JR, Chong A, Wehrly TD, Yu JJ, Rodriguez SA, Liu J, Celli J, Arulanandam BP, Klose KE.

Mol Microbiol. 2009 Dec;74(6):1459-70.

18.

Acid phosphatases do not contribute to the pathogenesis of type A Francisella tularensis.

Child R, Wehrly TD, Rockx-Brouwer D, Dorward DW, Celli J.

Infect Immun. 2010 Jan;78(1):59-67. doi: 10.1128/IAI.00965-09. Epub 2009 Oct 26.

19.

Intracellular biology and virulence determinants of Francisella tularensis revealed by transcriptional profiling inside macrophages.

Wehrly TD, Chong A, Virtaneva K, Sturdevant DE, Child R, Edwards JA, Brouwer D, Nair V, Fischer ER, Wicke L, Curda AJ, Kupko JJ 3rd, Martens C, Crane DD, Bosio CM, Porcella SF, Celli J.

Cell Microbiol. 2009 Jul;11(7):1128-50. doi: 10.1111/j.1462-5822.2009.01316.x. Epub 2009 Mar 18.

20.

The early phagosomal stage of Francisella tularensis determines optimal phagosomal escape and Francisella pathogenicity island protein expression.

Chong A, Wehrly TD, Nair V, Fischer ER, Barker JR, Klose KE, Celli J.

Infect Immun. 2008 Dec;76(12):5488-99. doi: 10.1128/IAI.00682-08. Epub 2008 Oct 13.

21.

Brucella intracellular replication requires trafficking through the late endosomal/lysosomal compartment.

Starr T, Ng TW, Wehrly TD, Knodler LA, Celli J.

Traffic. 2008 May;9(5):678-94. doi: 10.1111/j.1600-0854.2008.00718.x. Epub 2008 Feb 4.

22.

Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication.

Checroun C, Wehrly TD, Fischer ER, Hayes SF, Celli J.

Proc Natl Acad Sci U S A. 2006 Sep 26;103(39):14578-83. Epub 2006 Sep 18.

23.

Chromosomal excision of TCRdelta chain genes is dispensable for alphabeta T cell lineage commitment.

Khor B, Wehrly TD, Sleckman BP.

Int Immunol. 2005 Mar;17(3):225-32. Epub 2005 Jan 10.

PMID:
15642954
24.

The B12/23 restriction is critically dependent on recombination signal nonamer and spacer sequences.

Hughes MM, Tillman RE, Wehrly TD, White JM, Sleckman BP.

J Immunol. 2003 Dec 15;171(12):6604-10.

25.

T cell receptor CDR3 loop length repertoire is determined primarily by features of the V(D)J recombination reaction.

Hughes MM, Yassai M, Sedy JR, Wehrly TD, Huang CY, Kanagawa O, Gorski J, Sleckman BP.

Eur J Immunol. 2003 Jun;33(6):1568-75.

26.
27.

Restrictions limiting the generation of DNA double strand breaks during chromosomal V(D)J recombination.

Tillman RE, Wooley AL, Hughes MM, Wehrly TD, Swat W, Sleckman BP.

J Exp Med. 2002 Feb 4;195(3):309-16.

28.

Mechanisms that direct ordered assembly of T cell receptor beta locus V, D, and J gene segments.

Sleckman BP, Bassing CH, Hughes MM, Okada A, D'Auteuil M, Wehrly TD, Woodman BB, Davidson L, Chen J, Alt FW.

Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):7975-80.

29.

Recombination signal sequences restrict chromosomal V(D)J recombination beyond the 12/23 rule.

Bassing CH, Alt FW, Hughes MM, D'Auteuil M, Wehrly TD, Woodman BB, Gärtner F, White JM, Davidson L, Sleckman BP.

Nature. 2000 Jun 1;405(6786):583-6.

PMID:
10850719

Supplemental Content

Loading ...
Support Center