Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 29

1.

FLIRT: fast local infrared thermogenetics for subcellular control of protein function.

Hirsch SM, Sundaramoorthy S, Davies T, Zhuravlev Y, Waters JC, Shirasu-Hiza M, Dumont J, Canman JC.

Nat Methods. 2018 Nov;15(11):921-923. doi: 10.1038/s41592-018-0168-y. Epub 2018 Oct 30.

PMID:
30377360
2.

Direction of actin flow dictates integrin LFA-1 orientation during leukocyte migration.

Nordenfelt P, Moore TI, Mehta SB, Kalappurakkal JM, Swaminathan V, Koga N, Lambert TJ, Baker D, Waters JC, Oldenbourg R, Tani T, Mayor S, Waterman CM, Springer TA.

Nat Commun. 2017 Dec 11;8(1):2047. doi: 10.1038/s41467-017-01848-y.

3.

Phototoxicity in live fluorescence microscopy, and how to avoid it.

Icha J, Weber M, Waters JC, Norden C.

Bioessays. 2017 Aug;39(8). doi: 10.1002/bies.201700003. Review.

PMID:
28749075
4.

Developing elite Neurospora crassa strains for cellulosic ethanol production using fungal breeding.

Waters JC, Nixon A, Dwyer M, Biffinger JC, Lee K.

J Ind Microbiol Biotechnol. 2017 Aug;44(8):1137-1144. doi: 10.1007/s10295-017-1941-0. Epub 2017 Apr 20.

5.

Polo-like kinase-dependent phosphorylation of the synaptonemal complex protein SYP-4 regulates double-strand break formation through a negative feedback loop.

Nadarajan S, Lambert TJ, Altendorfer E, Gao J, Blower MD, Waters JC, Colaiácovo MP.

Elife. 2017 Mar 27;6. pii: e23437. doi: 10.7554/eLife.23437.

6.

Navigating challenges in the application of superresolution microscopy.

Lambert TJ, Waters JC.

J Cell Biol. 2017 Jan 2;216(1):53-63. doi: 10.1083/jcb.201610011. Epub 2016 Dec 5. Review.

7.

Macromolecular Interactions Control Structural and Thermal Properties of Regenerated Tri-Component Blended Films.

Lewis A, Waters JC, Stanton J, Hess J, Salas-de la Cruz D.

Int J Mol Sci. 2016 Nov 28;17(12). pii: E1989.

8.

Quantitative imaging in cell biology. Preface.

Waters JC, Wittmann T.

Methods Cell Biol. 2014;123:xix-xx. doi: 10.1016/B978-0-12-420138-5.09983-3. No abstract available.

PMID:
24974047
9.

A practical guide to microscope care and maintenance.

Petrak LJ, Waters JC.

Methods Cell Biol. 2014;123:55-76. doi: 10.1016/B978-0-12-420138-5.00004-5.

PMID:
24974022
10.

Assessing camera performance for quantitative microscopy.

Lambert TJ, Waters JC.

Methods Cell Biol. 2014;123:35-53. doi: 10.1016/B978-0-12-420138-5.00003-3. Review.

PMID:
24974021
11.

Concepts in quantitative fluorescence microscopy.

Waters JC, Wittmann T.

Methods Cell Biol. 2014;123:1-18. doi: 10.1016/B978-0-12-420138-5.00001-X.

PMID:
24974019
12.

A high-resolution multimode digital microscope system.

Salmon ED, Shaw SL, Waters JC, Waterman-Storer CM, Maddox PS, Yeh E, Bloom K.

Methods Cell Biol. 2013;114:179-210. doi: 10.1016/B978-0-12-407761-4.00009-9.

PMID:
23931508
13.

Live-cell fluorescence imaging.

Waters JC.

Methods Cell Biol. 2013;114:125-50. doi: 10.1016/B978-0-12-407761-4.00006-3.

PMID:
23931505
14.

CCD cameras for fluorescence imaging of living cells.

Salmon WC, Waters JC.

Cold Spring Harb Protoc. 2011 Jul 1;2011(7):790-802. doi: 10.1101/pdb.top113. No abstract available.

PMID:
21724827
15.

Accuracy and precision in quantitative fluorescence microscopy.

Waters JC.

J Cell Biol. 2009 Jun 29;185(7):1135-48. doi: 10.1083/jcb.200903097.

16.

Evaluating performance in three-dimensional fluorescence microscopy.

Murray JM, Appleton PL, Swedlow JR, Waters JC.

J Microsc. 2007 Dec;228(Pt 3):390-405.

17.

A high-resolution multimode digital microscope system.

Salmon ED, Shaw SL, Waters JC, Waterman-Storer CM, Maddox PS, Yeh E, Bloom K.

Methods Cell Biol. 2007;81:187-218. Review. No abstract available.

PMID:
17519169
18.

Live-cell fluorescence imaging.

Waters JC.

Methods Cell Biol. 2007;81:115-40. Review. No abstract available.

PMID:
17519165
19.
20.

Checkpoint signals in grasshopper meiosis are sensitive to microtubule attachment, but tension is still essential.

Nicklas RB, Waters JC, Salmon ED, Ward SC.

J Cell Sci. 2001 Dec;114(Pt 23):4173-83.

21.

Mad2 binding by phosphorylated kinetochores links error detection and checkpoint action in mitosis.

Waters JC, Chen RH, Murray AW, Gorbsky GJ, Salmon ED, Nicklas RB.

Curr Biol. 1999 Jun 17;9(12):649-52.

22.

Localization of Mad2 to kinetochores depends on microtubule attachment, not tension.

Waters JC, Chen RH, Murray AW, Salmon ED.

J Cell Biol. 1998 Jun 1;141(5):1181-91.

23.

Pathways of spindle assembly.

Waters JC, Salmon E.

Curr Opin Cell Biol. 1997 Feb;9(1):37-43. Review.

PMID:
9013671
24.

Oscillating mitotic newt lung cell kinetochores are, on average, under tension and rarely push.

Waters JC, Skibbens RV, Salmon ED.

J Cell Sci. 1996 Dec;109 ( Pt 12):2823-31.

25.

Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores.

Chen RH, Waters JC, Salmon ED, Murray AW.

Science. 1996 Oct 11;274(5285):242-6.

PMID:
8824188
26.

The kinetochore microtubule minus-end disassembly associated with poleward flux produces a force that can do work.

Waters JC, Mitchison TJ, Rieder CL, Salmon ED.

Mol Biol Cell. 1996 Oct;7(10):1547-58.

27.

Cytoskeleton: a catastrophic kinesin.

Waters JC, Salmon ED.

Curr Biol. 1996 Apr 1;6(4):361-3. Review.

28.

Chromosomes take an active role in spindle assembly.

Waters JC, Salmon ED.

Bioessays. 1995 Nov;17(11):911-4. Review.

PMID:
8526883

Supplemental Content

Loading ...
Support Center