Send to

Choose Destination
Sci Adv. 2019 Jan 18;5(1):eaav4020. doi: 10.1126/sciadv.aav4020. eCollection 2019 Jan.

Resonant inelastic x-ray incarnation of Young's double-slit experiment.

Author information

II. Physikalisches Institut, Universität zu Köln, Zülpicher Strasse 77, D-50937 Köln, Germany.
European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France.
Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy.
Dipartimento di Fisica, Università di Trento, via Sommarive 14, 38123 Povo (TN), Italy.
Abteilung Kristallographie, Institut für Geologie und Mineralogie, Zülpicher Strasse 49b, D-50674 Köln, Germany.
Institut für Theoretische Physik, Universität zu Köln, Zülpicher Strasse 77, D-50937 Köln, Germany.
Department of Physics, University of Gothenburg, SE-412 96 Gothenburg, Sweden.
Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden.
Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm, Sweden.
M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620137 Ekaterinburg, Russia.
Ural Federal University, Mira Street 19, 620002 Ekaterinburg, Russia.
Institute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany.


Young's archetypal double-slit experiment forms the basis for modern diffraction techniques: The elastic scattering of waves yields an interference pattern that captures the real-space structure. Here, we report on an inelastic incarnation of Young's experiment and demonstrate that resonant inelastic x-ray scattering (RIXS) measures interference patterns, which reveal the symmetry and character of electronic excited states in the same way as elastic scattering does for the ground state. A prototypical example is provided by the quasi-molecular electronic structure of insulating Ba3CeIr2O9 with structural Ir dimers and strong spin-orbit coupling. The double "slits" in this resonant experiment are the highly localized core levels of the two Ir atoms within a dimer. The clear double-slit-type sinusoidal interference patterns that we observe allow us to characterize the electronic excitations, demonstrating the power of RIXS interferometry to unravel the electronic structure of solids containing, e.g., dimers, trimers, ladders, or other superstructures.

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center