Sort by
Items per page

Send to

Choose Destination

Search results

Items: 43


Two uptake hydrogenases differentially interact with the aerobic respiratory chain during mycobacterial growth and persistence.

Cordero PRF, Grinter R, Hards K, Cryle MJ, Warr CG, Cook GM, Greening C.

J Biol Chem. 2019 Oct 17. pii: jbc.RA119.011076. doi: 10.1074/jbc.RA119.011076. [Epub ahead of print]


The torso-like gene functions to maintain the structure of the vitelline membrane in Nasonia vitripennis, implying its co-option into Drosophila axis formation.

Taylor SE, Tuffery J, Bakopoulos D, Lequeux S, Warr CG, Johnson TK, Dearden PK.

Biol Open. 2019 Sep 25;8(9). pii: bio046284. doi: 10.1242/bio.046284.


Molecular and Functional Evolution at the Odorant Receptor Or22 Locus in Drosophila melanogaster.

Shaw KH, Johnson TK, Anderson A, de Bruyne M, Warr CG.

Mol Biol Evol. 2019 May 1;36(5):919-929. doi: 10.1093/molbev/msz018.


Using Mouse and Drosophila Models to Investigate the Mechanistic Links between Diet, Obesity, Type II Diabetes, and Cancer.

Warr CG, Shaw KH, Azim A, Piper MDW, Parsons LM.

Int J Mol Sci. 2018 Dec 18;19(12). pii: E4110. doi: 10.3390/ijms19124110. Review.


Torso-Like Is a Component of the Hemolymph and Regulates the Insulin Signaling Pathway in Drosophila.

Henstridge MA, Aulsebrook L, Koyama T, Johnson TK, Whisstock JC, Tiganis T, Mirth CK, Warr CG.

Genetics. 2018 Apr;208(4):1523-1533. doi: 10.1534/genetics.117.300601. Epub 2018 Feb 13.


Genome-Wide Screen for New Components of the Drosophila melanogaster Torso Receptor Tyrosine Kinase Pathway.

Johns AR, Henstridge MA, Saligari MJ, Moore KA, Whisstock JC, Warr CG, Johnson TK.

G3 (Bethesda). 2018 Mar 2;8(3):761-769. doi: 10.1534/g3.117.300491.


A role for the Drosophila zinc transporter Zip88E in protecting against dietary zinc toxicity.

Richards CD, Warr CG, Burke R.

PLoS One. 2017 Jul 13;12(7):e0181237. doi: 10.1371/journal.pone.0181237. eCollection 2017.


MACPF/CDC proteins in development: Insights from Drosophila torso-like.

Johnson TK, Henstridge MA, Warr CG.

Semin Cell Dev Biol. 2017 Dec;72:163-170. doi: 10.1016/j.semcdb.2017.05.003. Epub 2017 May 12. Review.


Maternal Torso-Like Coordinates Tissue Folding During Drosophila Gastrulation.

Johnson TK, Moore KA, Whisstock JC, Warr CG.

Genetics. 2017 Jul;206(3):1459-1468. doi: 10.1534/genetics.117.200576. Epub 2017 May 11.


A Syndromic Neurodevelopmental Disorder Caused by De Novo Variants in EBF3.

Chao HT, Davids M, Burke E, Pappas JG, Rosenfeld JA, McCarty AJ, Davis T, Wolfe L, Toro C, Tifft C, Xia F, Stong N, Johnson TK, Warr CG; Undiagnosed Diseases Network, Yamamoto S, Adams DR, Markello TC, Gahl WA, Bellen HJ, Wangler MF, Malicdan MCV.

Am J Hum Genet. 2017 Jan 5;100(1):128-137. doi: 10.1016/j.ajhg.2016.11.018. Epub 2016 Dec 22.


Development of the Cellular Immune System of Drosophila Requires the Membrane Attack Complex/Perforin-Like Protein Torso-Like.

Forbes-Beadle L, Crossman T, Johnson TK, Burke R, Warr CG, Whisstock JC.

Genetics. 2016 Oct;204(2):675-681. Epub 2016 Aug 17.


Reduced glutathione biosynthesis in Drosophila melanogaster causes neuronal defects linked to copper deficiency.

Mercer SW, La Fontaine S, Warr CG, Burke R.

J Neurochem. 2016 May;137(3):360-70. doi: 10.1111/jnc.13567. Epub 2016 Mar 2.


A role for dZIP89B in Drosophila dietary zinc uptake reveals additional complexity in the zinc absorption process.

Richards CD, Warr CG, Burke R.

Int J Biochem Cell Biol. 2015 Dec;69:11-9. doi: 10.1016/j.biocel.2015.10.004. Epub 2015 Oct 13.


Torso-like mediates extracellular accumulation of Furin-cleaved Trunk to pattern the Drosophila embryo termini.

Johnson TK, Henstridge MA, Herr A, Moore KA, Whisstock JC, Warr CG.

Nat Commun. 2015 Oct 28;6:8759. doi: 10.1038/ncomms9759.


Copper overload and deficiency both adversely affect the central nervous system of Drosophila.

Hwang JE, de Bruyne M, Warr CG, Burke R.

Metallomics. 2014 Dec;6(12):2223-9. doi: 10.1039/c4mt00140k. Epub 2014 Oct 17.


Drosophila olfactory receptors as classifiers for volatiles from disparate real world applications.

Nowotny T, de Bruyne M, Berna AZ, Warr CG, Trowell SC.

Bioinspir Biomim. 2014 Oct 14;9(4):046007. doi: 10.1088/1748-3182/9/4/046007.


Vacuolar-type H(+)-ATPase subunits and the neurogenic protein big brain are required for optimal copper and zinc uptake.

Wang J, Binks T, Warr CG, Burke R.

Metallomics. 2014 Nov;6(11):2100-8. doi: 10.1039/c4mt00196f.


High resolution structure of cleaved Serpin 42 Da from Drosophila melanogaster.

Ellisdon AM, Zhang Q, Henstridge MA, Johnson TK, Warr CG, Law RH, Whisstock JC.

BMC Struct Biol. 2014 Apr 24;14:14. doi: 10.1186/1472-6807-14-14.


The Drosophila melanogaster phospholipid flippase dATP8B is required for odorant receptor function.

Liu YC, Pearce MW, Honda T, Johnson TK, Charlu S, Sharma KR, Imad M, Burke RE, Zinsmaier KE, Ray A, Dahanukar A, de Bruyne M, Warr CG.

PLoS Genet. 2014 Mar 20;10(3):e1004209. doi: 10.1371/journal.pgen.1004209. eCollection 2014 Mar.


Trunk cleavage is essential for Drosophila terminal patterning and can occur independently of Torso-like.

Henstridge MA, Johnson TK, Warr CG, Whisstock JC.

Nat Commun. 2014 Mar 3;5:3419. doi: 10.1038/ncomms4419.


The toll and Imd pathways are not required for wolbachia-mediated dengue virus interference.

Ranc├Ęs E, Johnson TK, Popovici J, Iturbe-Ormaetxe I, Zakir T, Warr CG, O'Neill SL.

J Virol. 2013 Nov;87(21):11945-9. doi: 10.1128/JVI.01522-13. Epub 2013 Aug 28.


Torso-like functions independently of Torso to regulate Drosophila growth and developmental timing.

Johnson TK, Crossman T, Foote KA, Henstridge MA, Saligari MJ, Forbes Beadle L, Herr A, Whisstock JC, Warr CG.

Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14688-92. doi: 10.1073/pnas.1309780110. Epub 2013 Aug 19.


The nucleus- and endoplasmic reticulum-targeted forms of protein tyrosine phosphatase 61F regulate Drosophila growth, life span, and fecundity.

Buszard BJ, Johnson TK, Meng TC, Burke R, Warr CG, Tiganis T.

Mol Cell Biol. 2013 Apr;33(7):1345-56. doi: 10.1128/MCB.01411-12. Epub 2013 Jan 22.


In vivo zinc toxicity phenotypes provide a sensitized background that suggests zinc transport activities for most of the Drosophila Zip and ZnT genes.

Lye JC, Richards CD, Dechen K, Warr CG, Burke R.

J Biol Inorg Chem. 2013 Mar;18(3):323-32. doi: 10.1007/s00775-013-0976-6. Epub 2013 Jan 17.


Systematic functional characterization of putative zinc transport genes and identification of zinc toxicosis phenotypes in Drosophila melanogaster.

Lye JC, Richards CD, Dechen K, Paterson D, de Jonge MD, Howard DL, Warr CG, Burke R.

J Exp Biol. 2012 Sep 15;215(Pt 18):3254-65. doi: 10.1242/jeb.069260. Epub 2012 Jun 12.


A screen for genes expressed in the olfactory organs of Drosophila melanogaster identifies genes involved in olfactory behaviour.

Tunstall NE, Herr A, de Bruyne M, Warr CG.

PLoS One. 2012;7(4):e35641. doi: 10.1371/journal.pone.0035641. Epub 2012 Apr 18.


Chemical communication in insects: the peripheral odour coding system of Drosophila melanogaster.

Tunstall NE, Warr CG.

Adv Exp Med Biol. 2012;739:59-77. doi: 10.1007/978-1-4614-1704-0_4. Review.


Dock/Nck facilitates PTP61F/PTP1B regulation of insulin signalling.

Wu CL, Buszard B, Teng CH, Chen WL, Warr CG, Tiganis T, Meng TC.

Biochem J. 2011 Oct 1;439(1):151-9. doi: 10.1042/BJ20110799.


Detection of volatile indicators of illicit substances by the olfactory receptors of Drosophila melanogaster.

Marshall B, Warr CG, de Bruyne M.

Chem Senses. 2010 Sep;35(7):613-25. doi: 10.1093/chemse/bjq050. Epub 2010 Jun 7.


Functional and molecular evolution of olfactory neurons and receptors for aliphatic esters across the Drosophila genus.

de Bruyne M, Smart R, Zammit E, Warr CG.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2010 Feb;196(2):97-109. doi: 10.1007/s00359-009-0496-6. Epub 2009 Dec 24.


Potential malaria reemergence, northeastern Thailand.

Petney T, Sithithaworn P, Satrawaha R, Warr CG, Andrews R, Wang YC, Feng C.

Emerg Infect Dis. 2009 Aug;15(8):1330-1. doi: 10.3201/eid1508.090240. No abstract available.


Molecular basis of female-specific odorant responses in Bombyx mori.

Anderson AR, Wanner KW, Trowell SC, Warr CG, Jaquin-Joly E, Zagatti P, Robertson H, Newcomb RD.

Insect Biochem Mol Biol. 2009 Mar;39(3):189-97. doi: 10.1016/j.ibmb.2008.11.002. Epub 2008 Dec 7.


Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins.

Smart R, Kiely A, Beale M, Vargas E, Carraher C, Kralicek AV, Christie DL, Chen C, Newcomb RD, Warr CG.

Insect Biochem Mol Biol. 2008 Aug;38(8):770-80. doi: 10.1016/j.ibmb.2008.05.002. Epub 2008 May 20.


Selective pressures on Drosophila chemosensory receptor genes.

Tunstall NE, Sirey T, Newcomb RD, Warr CG.

J Mol Evol. 2007 Jun;64(6):628-36. Epub 2007 May 29.


Functional analysis of a Drosophila melanogaster olfactory receptor expressed in Sf9 cells.

Kiely A, Authier A, Kralicek AV, Warr CG, Newcomb RD.

J Neurosci Methods. 2007 Jan 30;159(2):189-94. Epub 2006 Aug 21.


Molecular and cellular organization of insect chemosensory neurons.

de Bruyne M, Warr CG.

Bioessays. 2006 Jan;28(1):23-34. Review.


Coexpression of two functional odor receptors in one neuron.

Goldman AL, Van der Goes van Naters W, Lessing D, Warr CG, Carlson JR.

Neuron. 2005 Mar 3;45(5):661-6.


Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster.

Robertson HM, Warr CG, Carlson JR.

Proc Natl Acad Sci U S A. 2003 Nov 25;100 Suppl 2:14537-42. Epub 2003 Nov 7.


Integrating the molecular and cellular basis of odor coding in the Drosophila antenna.

Dobritsa AA, van der Goes van Naters W, Warr CG, Steinbrecht RA, Carlson JR.

Neuron. 2003 Mar 6;37(5):827-41.


Identification of novel multi-transmembrane proteins from genomic databases using quasi-periodic structural properties.

Kim J, Moriyama EN, Warr CG, Clyne PJ, Carlson JR.

Bioinformatics. 2000 Sep;16(9):767-75.


Candidate taste receptors in Drosophila.

Clyne PJ, Warr CG, Carlson JR.

Science. 2000 Mar 10;287(5459):1830-4.


A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila.

Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim J, Carlson JR.

Neuron. 1999 Feb;22(2):327-38.

Supplemental Content

Support Center