Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 24

1.

Observations and Contributions of Real-Time Indoor Ammonia Concentrations during HOMEChem.

Ampollini L, Katz EF, Bourne S, Tian Y, Novoselac A, Goldstein AH, Lucic G, Waring MS, DeCarlo PF.

Environ Sci Technol. 2019 Aug 6;53(15):8591-8598. doi: 10.1021/acs.est.9b02157. Epub 2019 Jul 8.

PMID:
31283200
2.

Modelling consortium for chemistry of indoor environments (MOCCIE): integrating chemical processes from molecular to room scales.

Shiraiwa M, Carslaw N, Tobias DJ, Waring MS, Rim D, Morrison G, Lakey PSJ, Kruza M, von Domaros M, Cummings BE, Won Y.

Environ Sci Process Impacts. 2019 Aug 14;21(8):1240-1254. doi: 10.1039/c9em00123a. Review.

PMID:
31070639
3.

Human occupant contribution to secondary aerosol mass in the indoor environment.

Avery AM, Waring MS, DeCarlo PF.

Environ Sci Process Impacts. 2019 Aug 14;21(8):1301-1312. doi: 10.1039/c9em00097f.

PMID:
30997458
4.

Predicting the importance of oxidative aging on indoor organic aerosol concentrations using the two-dimensional volatility basis set (2D-VBS).

Cummings BE, Waring MS.

Indoor Air. 2019 Jul;29(4):616-629. doi: 10.1111/ina.12552. Epub 2019 May 11.

PMID:
30861195
5.

Seasonal variation in aerosol composition and concentration upon transport from the outdoor to indoor environment.

Avery AM, Waring MS, DeCarlo PF.

Environ Sci Process Impacts. 2019 Mar 20;21(3):528-547. doi: 10.1039/c8em00471d.

PMID:
30698188
6.

Thirdhand smoke uptake to aerosol particles in the indoor environment.

DeCarlo PF, Avery AM, Waring MS.

Sci Adv. 2018 May 9;4(5):eaap8368. doi: 10.1126/sciadv.aap8368. eCollection 2018 May.

7.

Outcome-based ventilation: A framework for assessing performance, health, and energy impacts to inform office building ventilation decisions.

Rackes A, Ben-David T, Waring MS.

Indoor Air. 2018 Jul;28(4):585-603. doi: 10.1111/ina.12466. Epub 2018 May 15.

PMID:
29683212
8.

A modeling enterprise for chemistry of indoor environments (CIE).

Morrison GC, Carslaw N, Waring MS.

Indoor Air. 2017 Nov;27(6):1033-1038. doi: 10.1111/ina.12407. No abstract available.

PMID:
29024112
9.

Reactive indoor air chemistry and health-A workshop summary.

Wells JR, Schoemaecker C, Carslaw N, Waring MS, Ham JE, Nelissen I, Wolkoff P.

Int J Hyg Environ Health. 2017 Nov;220(8):1222-1229. doi: 10.1016/j.ijheh.2017.09.009. Epub 2017 Sep 23. Review.

10.

Airborne particles in indoor environment of homes, schools, offices and aged care facilities: The main routes of exposure.

Morawska L, Ayoko GA, Bae GN, Buonanno G, Chao CYH, Clifford S, Fu SC, Hänninen O, He C, Isaxon C, Mazaheri M, Salthammer T, Waring MS, Wierzbicka A.

Environ Int. 2017 Nov;108:75-83. doi: 10.1016/j.envint.2017.07.025. Epub 2017 Aug 9. Review.

11.

Real-time transformation of outdoor aerosol components upon transport indoors measured with aerosol mass spectrometry.

Johnson AM, Waring MS, DeCarlo PF.

Indoor Air. 2017 Jan;27(1):230-240. doi: 10.1111/ina.12299. Epub 2016 Apr 18.

PMID:
27008502
13.

Secondary organic aerosol formation initiated by α-terpineol ozonolysis in indoor air.

Yang Y, Waring MS.

Indoor Air. 2016 Dec;26(6):939-952. doi: 10.1111/ina.12271. Epub 2016 Jan 30.

PMID:
26609907
14.
15.

Perceptions in the U.S. building industry of the benefits and costs of improving indoor air quality.

Hamilton M, Rackes A, Gurian PL, Waring MS.

Indoor Air. 2016 Apr;26(2):318-30. doi: 10.1111/ina.12192. Epub 2015 Mar 4.

PMID:
25660513
16.

From commensalism to mutualism: integrating the microbial ecology, building science, and indoor air communities to advance research on the indoor microbiome.

Stephens B, Adams RI, Bhangar S, Bibby K, Waring MS.

Indoor Air. 2015 Feb;25(1):1-3. doi: 10.1111/ina.12167. No abstract available.

PMID:
25594131
17.

Transient secondary organic aerosol formation from limonene ozonolysis in indoor environments: impacts of air exchange rates and initial concentration ratios.

Youssefi S, Waring MS.

Environ Sci Technol. 2014 Jul 15;48(14):7899-908. doi: 10.1021/es5009906. Epub 2014 Jun 30.

PMID:
24940869
18.

Indoor-biofilter growth and exposure to airborne chemicals drive similar changes in plant root bacterial communities.

Russell JA, Hu Y, Chau L, Pauliushchyk M, Anastopoulos I, Anandan S, Waring MS.

Appl Environ Microbiol. 2014 Aug;80(16):4805-13. doi: 10.1128/AEM.00595-14. Epub 2014 May 30.

19.

Secondary organic aerosol in residences: predicting its fraction of fine particle mass and determinants of formation strength.

Waring MS.

Indoor Air. 2014 Aug;24(4):376-89. doi: 10.1111/ina.12092. Epub 2014 Feb 23.

PMID:
24387324
20.

Indoor secondary organic aerosol formation initiated from reactions between ozone and surface-sorbed D-limonene.

Waring MS, Siegel JA.

Environ Sci Technol. 2013 Jun 18;47(12):6341-8. doi: 10.1021/es400846d. Epub 2013 May 31.

PMID:
23724989
21.

Predicting secondary organic aerosol formation from terpenoid ozonolysis with varying yields in indoor environments.

Youssefi S, Waring MS.

Indoor Air. 2012 Oct;22(5):415-26. doi: 10.1111/j.1600-0668.2012.00776.x. Epub 2012 Apr 4.

PMID:
22372506
22.

The effect of an ion generator on indoor air quality in a residential room.

Waring MS, Siegel JA.

Indoor Air. 2011 Aug;21(4):267-76. doi: 10.1111/j.1600-0668.2010.00696.x. Epub 2010 Dec 1.

PMID:
21118308
23.

Particle loading rates for HVAC filters, heat exchangers, and ducts.

Waring MS, Siegel JA.

Indoor Air. 2008 Jun;18(3):209-24. doi: 10.1111/j.1600-0668.2008.00518.x. Epub 2008 Mar 10.

PMID:
18336534
24.

An evaluation of the indoor air quality in bars before and after a smoking ban in Austin, Texas.

Waring MS, Siegel JA.

J Expo Sci Environ Epidemiol. 2007 May;17(3):260-8. Epub 2006 Jun 28.

PMID:
16804559

Supplemental Content

Loading ...
Support Center