Format

Send to

Choose Destination
J Pharmacol Exp Ther. 1997 Nov;283(2):918-24.

Protection against septic shock and suppression of tumor necrosis factor alpha and nitric oxide production by dexanabinol (HU-211), a nonpsychotropic cannabinoid.

Author information

1
Department of Immunology, The Hebrew University, Faculty of Medicine, Jerusalem, Israel.

Abstract

Dexanabinol, HU-211, a synthetic cannabinoid devoid of psychotropic effects, improves neurological outcome in models of brain trauma, ischemia and meningitis. Recently, HU-211 was found to inhibit brain tumor necrosis factor (TNFalpha) production after head injury. In the present study, we demonstrate the ability of HU-211 to suppress TNFalpha production and to rescue mice and rats from endotoxic shock after LPS (Escherichia coli 055:B5) inoculation. In BALB/c mice, a dose of 10 mg/kg LPS, injected i.p., caused 57% and 100% mortality, at 24 and 48 hr, respectively. HU-211, administered i.p. 30 min before lipopolysaccharide (LPS), reduced lethality to 9 and 67% at these time points (P < .05). When coinjected with D-galactoseamine (i.p.), LPS was 100% lethal within 24 hr, whereas eight hourly injections of HU-211 caused mortality of C57BL/6 mice to drop to 10% (P < .001). Administration of LPS to Sprague-Dawley rats resulted in a 30% reduction in the mean arterial blood pressure within 30 min, which persisted for 3 hr. HU-211, given 2 to 3 min before LPS, completely abolished the typical hypotensive response. Furthermore, the drug also markedly suppressed in vitro TNFalpha production and nitric oxide generation (by >90%) by both murine peritoneal macrophages and rat alveolar macrophage cell line exposed to LPS. HU-211 may, therefore, have therapeutic implications in the treatment of TNFalpha-mediated pathologies.

PMID:
9353414
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center