Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 37

1.

De novo design of self-assembling helical protein filaments.

Shen H, Fallas JA, Lynch E, Sheffler W, Parry B, Jannetty N, Decarreau J, Wagenbach M, Vicente JJ, Chen J, Wang L, Dowling Q, Oberdorfer G, Stewart L, Wordeman L, De Yoreo J, Jacobs-Wagner C, Kollman J, Baker D.

Science. 2018 Nov 9;362(6415):705-709. doi: 10.1126/science.aau3775.

PMID:
30409885
2.

Modified carbazoles destabilize microtubules and kill glioblastoma multiform cells.

Diaz P, Horne E, Xu C, Hamel E, Wagenbach M, Petrov RR, Uhlenbruck B, Haas B, Hothi P, Wordeman L, Gussio R, Stella N.

Eur J Med Chem. 2018 Nov 5;159:74-89. doi: 10.1016/j.ejmech.2018.09.026. Epub 2018 Sep 11.

PMID:
30268825
3.

Corrigendum: The tetrameric kinesin Kif25 suppresses pre-mitotic centrosome separation to establish proper spindle orientation.

Decarreau J, Wagenbach M, Lynch E, Halpern AR, Vaughan JC, Kollman J, Wordeman L.

Nat Cell Biol. 2017 May 31;19(6):740. doi: 10.1038/ncb3546. No abstract available.

PMID:
28561052
4.

The tetrameric kinesin Kif25 suppresses pre-mitotic centrosome separation to establish proper spindle orientation.

Decarreau J, Wagenbach M, Lynch E, Halpern AR, Vaughan JC, Kollman J, Wordeman L.

Nat Cell Biol. 2017 Apr;19(4):384-390. doi: 10.1038/ncb3486. Epub 2017 Mar 6. Erratum in: Nat Cell Biol. 2017 May 31;19(6):740.

5.

Direct functional interaction of the kinesin-13 family member kinesin-like protein 2A (Kif2A) and Arf GAP with GTP-binding protein-like, ankyrin repeats and PH domains 1 (AGAP1).

Luo R, Chen PW, Wagenbach M, Jian X, Jenkins L, Wordeman L, Randazzo PA.

J Biol Chem. 2016 Dec 2;291(49):25761. No abstract available.

6.

Direct Functional Interaction of the Kinesin-13 Family Member Kinesin-like Protein 2A (Kif2A) and Arf GAP with GTP-binding Protein-like, Ankyrin Repeats and PH Domains1 (AGAP1).

Luo R, Chen PW, Wagenbach M, Jian X, Jenkins L, Wordeman L, Randazzo PA.

J Biol Chem. 2016 Oct 7;291(41):21350-21362. doi: 10.1074/jbc.M116.732479. Epub 2016 Aug 16. Erratum in: J Biol Chem. 2016 Dec 2;291(49):25761.

7.

ST-11: A New Brain-Penetrant Microtubule-Destabilizing Agent with Therapeutic Potential for Glioblastoma Multiforme.

Cherry AE, Haas BR, Naydenov AV, Fung S, Xu C, Swinney K, Wagenbach M, Freeling J, Canton DA, Coy J, Horne EA, Rickman B, Vicente JJ, Scott JD, Ho RJ, Liggitt D, Wordeman L, Stella N.

Mol Cancer Ther. 2016 Sep;15(9):2018-29. doi: 10.1158/1535-7163.MCT-15-0800. Epub 2016 Jun 20.

8.

Divergent microtubule assembly rates after short- versus long-term loss of end-modulating kinesins.

Wordeman L, Decarreau J, Vicente JJ, Wagenbach M.

Mol Biol Cell. 2016 Apr 15;27(8):1300-9. doi: 10.1091/mbc.E15-11-0803. Epub 2016 Feb 24.

9.

HX-MS2 for high performance conformational analysis of complex protein states.

Burns KM, Sarpe V, Wagenbach M, Wordeman L, Schriemer DC.

Protein Sci. 2015 Aug;24(8):1313-24. doi: 10.1002/pro.2707. Epub 2015 May 29. Erratum in: Protein Sci. 2016 Jan;25(1):302-3.

10.

Nucleotide exchange in dimeric MCAK induces longitudinal and lateral stress at microtubule ends to support depolymerization.

Burns KM, Wagenbach M, Wordeman L, Schriemer DC.

Structure. 2014 Aug 5;22(8):1173-1183. doi: 10.1016/j.str.2014.06.010. Epub 2014 Jul 24.

11.

Kif18A and chromokinesins confine centromere movements via microtubule growth suppression and spatial control of kinetochore tension.

Stumpff J, Wagenbach M, Franck A, Asbury CL, Wordeman L.

Dev Cell. 2012 May 15;22(5):1017-29. doi: 10.1016/j.devcel.2012.02.013.

12.

MCAK activity at microtubule tips regulates spindle microtubule length to promote robust kinetochore attachment.

Domnitz SB, Wagenbach M, Decarreau J, Wordeman L.

J Cell Biol. 2012 Apr 16;197(2):231-7. doi: 10.1083/jcb.201108147. Epub 2012 Apr 9.

13.

A tethering mechanism controls the processivity and kinetochore-microtubule plus-end enrichment of the kinesin-8 Kif18A.

Stumpff J, Du Y, English CA, Maliga Z, Wagenbach M, Asbury CL, Wordeman L, Ohi R.

Mol Cell. 2011 Sep 2;43(5):764-75. doi: 10.1016/j.molcel.2011.07.022.

14.

In vitro reconstitution of the functional interplay between MCAK and EB3 at microtubule plus ends.

Montenegro Gouveia S, Leslie K, Kapitein LC, Buey RM, Grigoriev I, Wagenbach M, Smal I, Meijering E, Hoogenraad CC, Wordeman L, Steinmetz MO, Akhmanova A.

Curr Biol. 2010 Oct 12;20(19):1717-22. doi: 10.1016/j.cub.2010.08.020. Epub 2010 Sep 16.

15.

Catalysis of the microtubule on-rate is the major parameter regulating the depolymerase activity of MCAK.

Cooper JR, Wagenbach M, Asbury CL, Wordeman L.

Nat Struct Mol Biol. 2010 Jan;17(1):77-82. doi: 10.1038/nsmb.1728. Epub 2009 Dec 6.

16.

Motor-dependent microtubule disassembly driven by tubulin tyrosination.

Peris L, Wagenbach M, Lafanechère L, Brocard J, Moore AT, Kozielski F, Job D, Wordeman L, Andrieux A.

J Cell Biol. 2009 Jun 29;185(7):1159-66. doi: 10.1083/jcb.200902142.

17.

A new model for binding of kinesin 13 to curved microtubule protofilaments.

Mulder AM, Glavis-Bloom A, Moores CA, Wagenbach M, Carragher B, Wordeman L, Milligan RA.

J Cell Biol. 2009 Apr 6;185(1):51-7. doi: 10.1083/jcb.200812052. Epub 2009 Mar 30.

18.

A kinesin-13 mutant catalytically depolymerizes microtubules in ADP.

Wagenbach M, Domnitz S, Wordeman L, Cooper J.

J Cell Biol. 2008 Nov 17;183(4):617-23. doi: 10.1083/jcb.200805145. Epub 2008 Nov 10.

19.

Secondary structure and compliance of a predicted flexible domain in kinesin-1 necessary for cooperation of motors.

Crevenna AH, Madathil S, Cohen DN, Wagenbach M, Fahmy K, Howard J.

Biophys J. 2008 Dec;95(11):5216-27. doi: 10.1529/biophysj.108.132449. Epub 2008 Sep 5.

20.

The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment.

Stumpff J, von Dassow G, Wagenbach M, Asbury C, Wordeman L.

Dev Cell. 2008 Feb;14(2):252-62. doi: 10.1016/j.devcel.2007.11.014.

21.

MCAK facilitates chromosome movement by promoting kinetochore microtubule turnover.

Wordeman L, Wagenbach M, von Dassow G.

J Cell Biol. 2007 Dec 3;179(5):869-79. Epub 2007 Nov 26.

22.

In vitro and in vivo analysis of microtubule-destabilizing kinesins.

Stumpff J, Cooper J, Domnitz S, Moore AT, Rankin KE, Wagenbach M, Wordeman L.

Methods Mol Biol. 2007;392:37-49.

23.

The kinesin-13 proteins Kif2a, Kif2b, and Kif2c/MCAK have distinct roles during mitosis in human cells.

Manning AL, Ganem NJ, Bakhoum SF, Wagenbach M, Wordeman L, Compton DA.

Mol Biol Cell. 2007 Aug;18(8):2970-9. Epub 2007 May 30.

24.

The role of the kinesin-13 neck in microtubule depolymerization.

Moores CA, Cooper J, Wagenbach M, Ovechkina Y, Wordeman L, Milligan RA.

Cell Cycle. 2006 Aug;5(16):1812-5. Epub 2006 Aug 15.

PMID:
16929184
25.

MCAK associates with the tips of polymerizing microtubules.

Moore AT, Rankin KE, von Dassow G, Peris L, Wagenbach M, Ovechkina Y, Andrieux A, Job D, Wordeman L.

J Cell Biol. 2005 May 9;169(3):391-7.

26.

MCAK, a Kin I kinesin, increases the catastrophe frequency of steady-state HeLa cell microtubules in an ATP-dependent manner in vitro.

Newton CN, Wagenbach M, Ovechkina Y, Wordeman L, Wilson L.

FEBS Lett. 2004 Aug 13;572(1-3):80-4.

27.

Aurora B regulates MCAK at the mitotic centromere.

Andrews PD, Ovechkina Y, Morrice N, Wagenbach M, Duncan K, Wordeman L, Swedlow JR.

Dev Cell. 2004 Feb;6(2):253-68.

28.

K-loop insertion restores microtubule depolymerizing activity of a "neckless" MCAK mutant.

Ovechkina Y, Wagenbach M, Wordeman L.

J Cell Biol. 2002 Nov 25;159(4):557-62.

29.

Molecular dissection of the microtubule depolymerizing activity of mitotic centromere-associated kinesin.

Maney T, Wagenbach M, Wordeman L.

J Biol Chem. 2001 Sep 14;276(37):34753-8. Epub 2001 Jul 20.

30.
31.

Kinesin's tail domain is an inhibitory regulator of the motor domain.

Coy DL, Hancock WO, Wagenbach M, Howard J.

Nat Cell Biol. 1999 Sep;1(5):288-92.

PMID:
10559941
32.

Kinesin takes one 8-nm step for each ATP that it hydrolyzes.

Coy DL, Wagenbach M, Howard J.

J Biol Chem. 1999 Feb 5;274(6):3667-71.

33.

Using antisense technology to study mitosis.

Wordeman L, Wagenbach M.

Methods Cell Biol. 1999;61:245-66. Review. No abstract available.

PMID:
9891319
34.

Mitotic centromere-associated kinesin is important for anaphase chromosome segregation.

Maney T, Hunter AW, Wagenbach M, Wordeman L.

J Cell Biol. 1998 Aug 10;142(3):787-801.

35.

New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor.

Brake AJ, Wagenbach MJ, Julius D.

Nature. 1994 Oct 6;371(6497):519-23.

PMID:
7523952
36.

Comparative studies of Drosophila Antennapedia genes.

Hooper JE, Pérez-Alonso M, Bermingham JR, Prout M, Rocklein BA, Wagenbach M, Edstrom JE, de Frutos R, Scott MP.

Genetics. 1992 Oct;132(2):453-69.

37.

Synthesis of wild type and mutant human hemoglobins in Saccharomyces cerevisiae.

Wagenbach M, O'Rourke K, Vitez L, Wieczorek A, Hoffman S, Durfee S, Tedesco J, Stetler G.

Biotechnology (N Y). 1991 Jan;9(1):57-61.

PMID:
1367213

Supplemental Content

Loading ...
Support Center