Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 14

1.

In vivo Hox binding specificity revealed by systematic changes to a single cis regulatory module.

Sánchez-Higueras C, Rastogi C, Voutev R, Bussemaker HJ, Mann RS, Hombría JC.

Nat Commun. 2019 Aug 9;10(1):3597. doi: 10.1038/s41467-019-11416-1.

2.

TP901-1 Phage Recombinase Facilitates Genome Engineering in Drosophila melanogaster.

Voutev R, Mann RS.

G3 (Bethesda). 2019 Apr 9;9(4):983-986. doi: 10.1534/g3.119.0002.

3.

cis-regulatory architecture of a short-range EGFR organizing center in the Drosophila melanogaster leg.

Newcomb S, Voutev R, Jory A, Delker RK, Slattery M, Mann RS.

PLoS Genet. 2018 Aug 24;14(8):e1007568. doi: 10.1371/journal.pgen.1007568. eCollection 2018 Aug.

4.

Robust ΦC31-Mediated Genome Engineering in Drosophila melanogaster Using Minimal attP/attB Phage Sites.

Voutev R, Mann RS.

G3 (Bethesda). 2018 May 4;8(5):1399-1402. doi: 10.1534/g3.118.200051.

5.

Bxb1 phage recombinase assists genome engineering in Drosophila melanogaster.

Voutev R, Mann RS.

Biotechniques. 2017 Jan 1;62(1):37-38. doi: 10.2144/000114494.

6.

Streamlined scanning for enhancer elements in Drosophila melanogaster.

Voutev R, Mann RS.

Biotechniques. 2016 Mar 1;60(3):141-4. doi: 10.2144/000114391. eCollection 2016.

7.

Divergent transcriptional regulatory logic at the intersection of tissue growth and developmental patterning.

Slattery M, Voutev R, Ma L, Nègre N, White KP, Mann RS.

PLoS Genet. 2013;9(9):e1003753. doi: 10.1371/journal.pgen.1003753. Epub 2013 Sep 5.

8.

Temporal patterning of Drosophila medulla neuroblasts controls neural fates.

Li X, Erclik T, Bertet C, Chen Z, Voutev R, Venkatesh S, Morante J, Celik A, Desplan C.

Nature. 2013 Jun 27;498(7455):456-62. doi: 10.1038/nature12319. Epub 2013 Jun 19.

9.

A dynamic network of morphogens and transcription factors patterns the fly leg.

Estella C, Voutev R, Mann RS.

Curr Top Dev Biol. 2012;98:173-98. doi: 10.1016/B978-0-12-386499-4.00007-0. Review.

10.

A "latent niche" mechanism for tumor initiation.

McGovern M, Voutev R, Maciejowski J, Corsi AK, Hubbard EJ.

Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11617-22. doi: 10.1073/pnas.0903768106. Epub 2009 Jun 29.

11.

Characterization of the Caenorhabditis elegans Islet LIM-homeodomain ortholog, lim-7.

Voutev R, Keating R, Hubbard EJ, Vallier LG.

FEBS Lett. 2009 Jan 22;583(2):456-64. doi: 10.1016/j.febslet.2008.12.046. Epub 2008 Dec 29.

12.

A "FLP-Out" system for controlled gene expression in Caenorhabditis elegans.

Voutev R, Hubbard EJ.

Genetics. 2008 Sep;180(1):103-19. doi: 10.1534/genetics.108.090274. Epub 2008 Aug 24.

13.

Alterations in ribosome biogenesis cause specific defects in C. elegans hermaphrodite gonadogenesis.

Voutev R, Killian DJ, Ahn JH, Hubbard EJ.

Dev Biol. 2006 Oct 1;298(1):45-58. Epub 2006 Jun 8.

14.

Autosomal genes of autosomal/X-linked duplicated gene pairs and germ-line proliferation in Caenorhabditis elegans.

Maciejowski J, Ahn JH, Cipriani PG, Killian DJ, Chaudhary AL, Lee JI, Voutev R, Johnsen RC, Baillie DL, Gunsalus KC, Fitch DH, Hubbard EJ.

Genetics. 2005 Apr;169(4):1997-2011. Epub 2005 Jan 31.

Supplemental Content

Loading ...
Support Center