Send to

Choose Destination
R Soc Open Sci. 2018 Jun 6;5(6):171811. doi: 10.1098/rsos.171811. eCollection 2018 Jun.

Effect of Hf-doping on electrochemical performance of anatase TiO2 as an anode material for lithium storage.

Author information

Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia.
Far Eastern Federal University, Vladivostok 690950, Russia.
National Research Centre 'Kurchatov Institute', Moscow 123182, Russia.


Hafnium-doped titania (Hf/Ti = 0.01; 0.03; 0.05) had been facilely synthesized via a template sol-gel method on carbon fibre. Physico-chemical properties of the as-synthesized materials were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, scanning transmission electron microscopy, X-ray photoelectron spectroscopy, thermogravimetry analysis and Brunauer-Emmett-Teller measurements. It was confirmed that Hf4+ substitute in the Ti4+ sites, forming Ti1-x Hf x O2 (x = 0.01; 0.03; 0.05) solid solutions with an anatase crystal structure. The Ti1-x Hf x O2 materials are hollow microtubes (length of 10-100 µm, outer diameter of 1-5 µm) composed of nanoparticles (average size of 15-20 nm) with a surface area of 80-90 m2 g-1 and pore volume of 0.294-0.372 cm3 g-1. The effect of Hf ion incorporation on the electrochemical behaviour of anatase TiO2 in the Li-ion battery anode was investigated by galvanostatic charge/discharge and electrochemical impedance spectroscopy. It was established that Ti0.95Hf0.05O2 shows significantly higher reversibility (154.2 mAh g-1) after 35-fold cycling at a C/10 rate in comparison with undoped titania (55.9 mAh g-1). The better performance offered by Hf4+ substitution of the Ti4+ into anatase TiO2 mainly results from a more open crystal structure, which has been achieved via the difference in ionic radius values of Ti4+ (0.604 Å) and Hf4+ (0.71 Å). The obtained results are in good accord with those for anatase TiO2 doped with Zr4+ (0.72 Å), published earlier. Furthermore, improved electrical conductivity of Hf-doped anatase TiO2 materials owing to charge redistribution in the lattice and enhanced interfacial lithium storage owing to increased surface area directly depending on the Hf/Ti atomic ratio have a beneficial effect on electrochemical properties.


Li-ion battery; anatase TiO2; anode; doping; nanostructured material; sol–gel process

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center