Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 23

1.

Moving beyond panaceas in fisheries governance.

Young OR, Webster DG, Cox ME, Raakjær J, Blaxekjær LØ, Einarsson N, Virginia RA, Acheson J, Bromley D, Cardwell E, Carothers C, Eythórsson E, Howarth RB, Jentoft S, McCay BJ, McCormack F, Osherenko G, Pinkerton E, van Ginkel R, Wilson JA, Rivers L 3rd, Wilson RS.

Proc Natl Acad Sci U S A. 2018 Sep 11;115(37):9065-9073. doi: 10.1073/pnas.1716545115. Epub 2018 Aug 23.

PMID:
30139919
2.

Stoichiometric Shifts in Soil C:N:P Promote Bacterial Taxa Dominance, Maintain Biodiversity, and Deconstruct Community Assemblages.

Aanderud ZT, Saurey S, Ball BA, Wall DH, Barrett JE, Muscarella ME, Griffin NA, Virginia RA, Adams BJ.

Front Microbiol. 2018 Jul 3;9:1401. doi: 10.3389/fmicb.2018.01401. eCollection 2018.

3.

Observed trends of soil fauna in the Antarctic Dry Valleys: early signs of shifts predicted under climate change.

Andriuzzi WS, Adams BJ, Barrett JE, Virginia RA, Wall DH.

Ecology. 2018 Feb;99(2):312-321. doi: 10.1002/ecy.2090. Epub 2018 Jan 5.

PMID:
29315515
4.

Decadal ecosystem response to an anomalous melt season in a polar desert in Antarctica.

Gooseff MN, Barrett JE, Adams BJ, Doran PT, Fountain AG, Lyons WB, McKnight DM, Priscu JC, Sokol ER, Takacs-Vesbach C, Vandegehuchte ML, Virginia RA, Wall DH.

Nat Ecol Evol. 2017 Sep;1(9):1334-1338. doi: 10.1038/s41559-017-0253-0. Epub 2017 Aug 7.

PMID:
29046542
5.

In a warmer Arctic, mosquitoes avoid increased mortality from predators by growing faster.

Culler LE, Ayres MP, Virginia RA.

Proc Biol Sci. 2015 Sep 22;282(1815). pii: 20151549. doi: 10.1098/rspb.2015.1549.

6.

Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley.

Mikucki JA, Auken E, Tulaczyk S, Virginia RA, Schamper C, Sørensen KI, Doran PT, Dugan H, Foley N.

Nat Commun. 2015 Apr 28;6:6831. doi: 10.1038/ncomms7831.

7.

Ecological biogeography of the terrestrial nematodes of victoria land, antarctica.

Adams BJ, Wall DH, Virginia RA, Broos E, Knox MA.

Zookeys. 2014 Jun 23;(419):29-71. doi: 10.3897/zookeys.419.7180. eCollection 2014.

8.

Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability.

Craine JM, Elmore AJ, Aidar MP, Bustamante M, Dawson TE, Hobbie EA, Kahmen A, Mack MC, McLauchlan KK, Michelsen A, Nardoto GB, Pardo LH, Peñuelas J, Reich PB, Schuur EA, Stock WD, Templer PH, Virginia RA, Welker JM, Wright IJ.

New Phytol. 2009;183(4):980-92. doi: 10.1111/j.1469-8137.2009.02917.x. Epub 2009 Jun 26.

9.

Effects of human trampling on populations of soil fauna in the McMurdo Dry Valleys, Antarctica.

Ayres E, Nkem JN, Wall DH, Adams BJ, Barrett JE, Broos EJ, Parsons AN, Powers LE, Simmons BL, Virginia RA.

Conserv Biol. 2008 Dec;22(6):1544-51. doi: 10.1111/j.1523-1739.2008.01034.x. Epub 2008 Aug 28.

PMID:
18759772
10.

Antarctic climate cooling and terrestrial ecosystem response.

Doran PT, Priscu JC, Lyons WB, Walsh JE, Fountain AG, McKnight DM, Moorhead DL, Virginia RA, Wall DH, Clow GD, Fritsen CH, McKay CP, Parsons AN.

Nature. 2002 Jan 31;415(6871):517-20. Epub 2002 Jan 13.

PMID:
11793010
11.

Nuclear and Mitochondrial DNA Sequence Diversity in the Antarctic Nematode Scottnema lindsayae.

Courtright EM, Wall DH, Virginia RA, Frisse LM, Vida JT, Thomas WK.

J Nematol. 2000 Jun;32(2):143-53.

12.

Carbon isotopes reveal soil organic matter dynamics following arid land shrub expansion.

Connin SL, Virginia RA, Chamberlain CP.

Oecologia. 1997 Apr;110(3):374-386. doi: 10.1007/s004420050172.

PMID:
28307227
13.
15.

Effects of plant size and water relations on gas exchange and growth of the desert shrub Larrea tridentata.

Franco AC, de Soyza AG, Virginia RA, Reynolds JF, Whitford WG.

Oecologia. 1994 Mar;97(2):171-178. doi: 10.1007/BF00323146.

PMID:
28313925
16.

Biological feedbacks in global desertification.

Schlesinger WH, Reynolds JF, Cunningham GL, Huenneke LF, Jarrell WM, Virginia RA, Whitford WG.

Science. 1990 Mar 2;247(4946):1043-8.

PMID:
17800060
17.

Characteristics of woodland rhizobial populations from surface- and deep-soil environments of the sonoran desert.

Waldon HB, Jenkins MB, Virginia RA, Harding EE.

Appl Environ Microbiol. 1989 Dec;55(12):3058-64.

18.

Rhizobial Ecology of the Woody Legume Mesquite (Prosopis glandulosa) in the Sonoran Desert.

Jenkins MB, Virginia RA, Jarrell WM.

Appl Environ Microbiol. 1987 Jan;53(1):36-40.

19.

Simulation model of a laboratory-grown phreatophytic woody legume.

Bachelet D, Jarrell WM, Virginia RA.

Tree Physiol. 1986 Dec;2(1_2_3):205-214.

PMID:
14975854
20.

Influences of microclimatic conditions and water relations on seasonal leaf dimorphism of Prosopis glandulosa var. torreyana in the Sonoran Desert, California.

Nilsen ET, Sharifi MR, Rundel PW, Virginia RA.

Oecologia. 1986 Apr;69(1):95-100. doi: 10.1007/BF00399043.

PMID:
28311690
21.

Estimates of N2-fixation from variation in the natural abundance of 15N in Sonoran desert ecosystems.

Shearer G, Kohl DH, Virginia RA, Bryan BA, Skeeters JL, Nilsen ET, Sharifi MR, Rundel PW.

Oecologia. 1983 Feb;56(2-3):365-373. doi: 10.1007/BF00379714.

PMID:
28310218
22.

Natural 15N abundance of presumed N2-fixing and non-N2-fixing plants from selected ecosystems.

Virginia RA, Delwiche CC.

Oecologia. 1982 Sep;54(3):317-325. doi: 10.1007/BF00380000.

PMID:
28309955
23.

Direct measurement of denitrification in a Prosopis (Mesquite) dominated Sonoran Desert ecosystem.

Virginia RA, Jarrell WM, Franco-Vizcaino E.

Oecologia. 1982 Apr;53(1):120-122. doi: 10.1007/BF00377145.

PMID:
28310612

Supplemental Content

Loading ...
Support Center