Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 103

1.

Formation and Electronic Structure of an Atypical CuA Site.

Ross MO, Fisher OS, Morgada MN, Krzyaniak MD, Wasielewski MR, Vila AJ, Hoffman BM, Rosenzweig AC.

J Am Chem Soc. 2019 Mar 20;141(11):4678-4686. doi: 10.1021/jacs.8b13610. Epub 2019 Mar 7.

PMID:
30807125
2.

Fine Tuning of Functional Features of the CuA Site by Loop-Directed Mutagenesis.

Zitare UA, Szuster J, Santalla MC, Llases ME, Morgada MN, Vila AJ, Murgida DH.

Inorg Chem. 2019 Feb 4;58(3):2149-2157. doi: 10.1021/acs.inorgchem.8b03244. Epub 2019 Jan 15.

PMID:
30644741
3.

Dramatic Electronic Perturbations of CuA Centers via Subtle Geometric Changes.

Leguto AJ, Smith MA, Morgada MN, Zitare UA, Murgida DH, Lancaster KM, Vila AJ.

J Am Chem Soc. 2019 Jan 23;141(3):1373-1381. doi: 10.1021/jacs.8b12335. Epub 2019 Jan 8.

4.

The Reaction Mechanism of Metallo-β-Lactamases Is Tuned by the Conformation of an Active-Site Mobile Loop.

Palacios AR, Mojica MF, Giannini E, Taracila MA, Bethel CR, Alzari PM, Otero LH, Klinke S, Llarrull LI, Bonomo RA, Vila AJ.

Antimicrob Agents Chemother. 2018 Dec 21;63(1). pii: e01754-18. doi: 10.1128/AAC.01754-18. Print 2019 Jan.

5.

Engineering a bifunctional copper site in the cupredoxin fold by loop-directed mutagenesis.

Espinoza-Cara A, Zitare U, Alvarez-Paggi D, Klinke S, Otero LH, Murgida DH, Vila AJ.

Chem Sci. 2018 Jun 28;9(32):6692-6702. doi: 10.1039/c8sc01444b. eCollection 2018 Aug 28.

6.

Shaping Substrate Selectivity in a Broad-Spectrum Metallo-β-Lactamase.

González LJ, Stival C, Puzzolo JL, Moreno DM, Vila AJ.

Antimicrob Agents Chemother. 2018 Mar 27;62(4). pii: e02079-17. doi: 10.1128/AAC.02079-17. Print 2018 Apr.

7.

Clinical Evolution of New Delhi Metallo-β-Lactamase (NDM) Optimizes Resistance under Zn(II) Deprivation.

Bahr G, Vitor-Horen L, Bethel CR, Bonomo RA, González LJ, Vila AJ.

Antimicrob Agents Chemother. 2017 Dec 21;62(1). pii: e01849-17. doi: 10.1128/AAC.01849-17. Print 2018 Jan.

8.

A general reaction mechanism for carbapenem hydrolysis by mononuclear and binuclear metallo-β-lactamases.

Lisa MN, Palacios AR, Aitha M, González MM, Moreno DM, Crowder MW, Bonomo RA, Spencer J, Tierney DL, Llarrull LI, Vila AJ.

Nat Commun. 2017 Sep 14;8(1):538. doi: 10.1038/s41467-017-00601-9.

9.

Mitochondrial cytochrome c oxidase biogenesis: Recent developments.

Timón-Gómez A, Nývltová E, Abriata LA, Vila AJ, Hosler J, Barrientos A.

Semin Cell Dev Biol. 2018 Apr;76:163-178. doi: 10.1016/j.semcdb.2017.08.055. Epub 2017 Sep 8. Review.

10.

Avibactam Restores the Susceptibility of Clinical Isolates of Stenotrophomonas maltophilia to Aztreonam.

Mojica MF, Papp-Wallace KM, Taracila MA, Barnes MD, Rutter JD, Jacobs MR, LiPuma JJ, Walsh TJ, Vila AJ, Bonomo RA.

Antimicrob Agents Chemother. 2017 Sep 22;61(10). pii: e00777-17. doi: 10.1128/AAC.00777-17. Print 2017 Oct.

11.

Tuning of Enthalpic/Entropic Parameters of a Protein Redox Center through Manipulation of the Electronic Partition Function.

Alvarez-Paggi D, Zitare UA, Szuster J, Morgada MN, Leguto AJ, Vila AJ, Murgida DH.

J Am Chem Soc. 2017 Jul 26;139(29):9803-9806. doi: 10.1021/jacs.7b05199. Epub 2017 Jul 11.

PMID:
28662578
12.

Enantioselective synthesis of new oxazolidinylthiazolidines as enzyme inhibitors.

Saiz C, Villamil V, González MM, Rossi MA, Martínez L, Suescun L, Vila AJ, Mahler G.

Tetrahedron Asymmetry. 2017 Jan 15;28(1):110-117. doi: 10.1016/j.tetasy.2016.11.002. Epub 2016 Nov 28.

13.

Impact of copper ligand mutations on a cupredoxin with a green copper center.

Roger M, Sciara G, Biaso F, Lojou E, Wang X, Bauzan M, Giudici-Orticoni MT, Vila AJ, Ilbert M.

Biochim Biophys Acta Bioenerg. 2017 May;1858(5):351-359. doi: 10.1016/j.bbabio.2017.02.007. Epub 2017 Feb 16.

14.

Can Ceftazidime-Avibactam and Aztreonam Overcome β-Lactam Resistance Conferred by Metallo-β-Lactamases in Enterobacteriaceae?

Marshall S, Hujer AM, Rojas LJ, Papp-Wallace KM, Humphries RM, Spellberg B, Hujer KM, Marshall EK, Rudin SD, Perez F, Wilson BM, Wasserman RB, Chikowski L, Paterson DL, Vila AJ, van Duin D, Kreiswirth BN, Chambers HF, Fowler VG Jr, Jacobs MR, Pulse ME, Weiss WJ, Bonomo RA.

Antimicrob Agents Chemother. 2017 Mar 24;61(4). pii: e02243-16. doi: 10.1128/AAC.02243-16. Print 2017 Apr.

15.

Lipidated β-lactamases: from bench to bedside.

González LJ, Bahr G, Vila AJ.

Future Microbiol. 2016 Dec;11:1495-1498. Epub 2016 Nov 10. No abstract available.

16.

Bisthiazolidines: A Substrate-Mimicking Scaffold as an Inhibitor of the NDM-1 Carbapenemase.

González MM, Kosmopoulou M, Mojica MF, Castillo V, Hinchliffe P, Pettinati I, Brem J, Schofield CJ, Mahler G, Bonomo RA, Llarrull LI, Spencer J, Vila AJ.

ACS Infect Dis. 2015 Nov 13;1(11):544-54. doi: 10.1021/acsinfecdis.5b00046. Epub 2015 Jul 20.

17.

Crystal Structure of the Metallo-β-Lactamase GOB in the Periplasmic Dizinc Form Reveals an Unusual Metal Site.

Morán-Barrio J, Lisa MN, Larrieux N, Drusin SI, Viale AM, Moreno DM, Buschiazzo A, Vila AJ.

Antimicrob Agents Chemother. 2016 Sep 23;60(10):6013-22. doi: 10.1128/AAC.01067-16. Print 2016 Oct.

18.

Cross-class metallo-β-lactamase inhibition by bisthiazolidines reveals multiple binding modes.

Hinchliffe P, González MM, Mojica MF, González JM, Castillo V, Saiz C, Kosmopoulou M, Tooke CL, Llarrull LI, Mahler G, Bonomo RA, Vila AJ, Spencer J.

Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):E3745-54. doi: 10.1073/pnas.1601368113. Epub 2016 Jun 14.

19.

Membrane anchoring stabilizes and favors secretion of New Delhi metallo-β-lactamase.

González LJ, Bahr G, Nakashige TG, Nolan EM, Bonomo RA, Vila AJ.

Nat Chem Biol. 2016 Jul;12(7):516-22. doi: 10.1038/nchembio.2083. Epub 2016 May 16.

20.

Optimization of Conformational Dynamics in an Epistatic Evolutionary Trajectory.

González MM, Abriata LA, Tomatis PE, Vila AJ.

Mol Biol Evol. 2016 Jul;33(7):1768-76. doi: 10.1093/molbev/msw052. Epub 2016 Mar 15.

21.

Triton Hodge Test: Improved Protocol for Modified Hodge Test for Enhanced Detection of NDM and Other Carbapenemase Producers.

Pasteran F, Gonzalez LJ, Albornoz E, Bahr G, Vila AJ, Corso A.

J Clin Microbiol. 2016 Mar;54(3):640-9. doi: 10.1128/JCM.01298-15. Epub 2015 Dec 30.

22.

Loop recognition and copper-mediated disulfide reduction underpin metal site assembly of CuA in human cytochrome oxidase.

Morgada MN, Abriata LA, Cefaro C, Gajda K, Banci L, Vila AJ.

Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11771-6. doi: 10.1073/pnas.1505056112. Epub 2015 Sep 8.

23.

Overcoming differences: The catalytic mechanism of metallo-β-lactamases.

Meini MR, Llarrull LI, Vila AJ.

FEBS Lett. 2015 Nov 14;589(22):3419-32. doi: 10.1016/j.febslet.2015.08.015. Epub 2015 Aug 20. Review.

24.

Reversible Switching of Redox-Active Molecular Orbitals and Electron Transfer Pathways in Cu(A) Sites of Cytochrome c Oxidase.

Zitare U, Alvarez-Paggi D, Morgada MN, Abriata LA, Vila AJ, Murgida DH.

Angew Chem Int Ed Engl. 2015 Aug 10;54(33):9555-9. doi: 10.1002/anie.201504188. Epub 2015 Jun 26.

PMID:
26118421
25.

Exploring the Role of Residue 228 in Substrate and Inhibitor Recognition by VIM Metallo-β-lactamases.

Mojica MF, Mahler SG, Bethel CR, Taracila MA, Kosmopoulou M, Papp-Wallace KM, Llarrull LI, Wilson BM, Marshall SH, Wallace CJ, Villegas MV, Harris ME, Vila AJ, Spencer J, Bonomo RA.

Biochemistry. 2015 May 26;54(20):3183-96. doi: 10.1021/acs.biochem.5b00106. Epub 2015 May 12.

26.

Quantitative Description of a Protein Fitness Landscape Based on Molecular Features.

Meini MR, Tomatis PE, Weinreich DM, Vila AJ.

Mol Biol Evol. 2015 Jul;32(7):1774-87. doi: 10.1093/molbev/msv059. Epub 2015 Mar 12.

27.

Evolution of Metallo-β-lactamases: Trends Revealed by Natural Diversity and in vitro Evolution.

Meini MR, Llarrull LI, Vila AJ.

Antibiotics (Basel). 2014 Jul 1;3(3):285-316.

28.

A dimerization interface mediated by functionally critical residues creates interfacial disulfide bonds and copper sites in CueP.

Abriata LA, Pontel LB, Vila AJ, Dal Peraro M, Soncini FC.

J Inorg Biochem. 2014 Nov;140:199-201. doi: 10.1016/j.jinorgbio.2014.07.022. Epub 2014 Aug 7.

PMID:
25151035
29.

Extensively drug-resistant pseudomonas aeruginosa isolates containing blaVIM-2 and elements of Salmonella genomic island 2: a new genetic resistance determinant in Northeast Ohio.

Perez F, Hujer AM, Marshall SH, Ray AJ, Rather PN, Suwantarat N, Dumford D 3rd, O'Shea P, Domitrovic TN, Salata RA, Chavda KD, Chen L, Kreiswirth BN, Vila AJ, Haussler S, Jacobs MR, Bonomo RA.

Antimicrob Agents Chemother. 2014 Oct;58(10):5929-35. doi: 10.1128/AAC.02372-14. Epub 2014 Jul 28.

30.

Control of the electronic ground state on an electron-transfer copper site by second-sphere perturbations.

Morgada MN, Abriata LA, Zitare U, Alvarez-Paggi D, Murgida DH, Vila AJ.

Angew Chem Int Ed Engl. 2014 Jun 10;53(24):6188-92. doi: 10.1002/anie.201402083. Epub 2014 Apr 28.

PMID:
24777732
31.

Molecular dynamics simulations of apocupredoxins: insights into the formation and stabilization of copper sites under entatic control.

Abriata LA, Vila AJ, Dal Peraro M.

J Biol Inorg Chem. 2014 Jun;19(4-5):565-75. doi: 10.1007/s00775-014-1108-7. Epub 2014 Jan 30.

PMID:
24477946
32.

The complete nucleotide sequence of the carbapenem resistance-conferring conjugative plasmid pLD209 from a Pseudomonas putida clinical strain reveals a chimeric design formed by modules derived from both environmental and clinical bacteria.

Marchiaro PM, Brambilla L, Morán-Barrio J, Revale S, Pasteran F, Vila AJ, Viale AM, Limansky AS.

Antimicrob Agents Chemother. 2014;58(3):1816-21. doi: 10.1128/AAC.02494-13. Epub 2014 Jan 6.

33.

Host-specific enzyme-substrate interactions in SPM-1 metallo-β-lactamase are modulated by second sphere residues.

González LJ, Moreno DM, Bonomo RA, Vila AJ.

PLoS Pathog. 2014 Jan;10(1):e1003817. doi: 10.1371/journal.ppat.1003817. Epub 2014 Jan 2.

34.

Redox-state sensing by hydrogen bonds in the CuA center of cytochrome c oxidase.

Abriata LA, Vila AJ.

J Inorg Biochem. 2014 Mar;132:18-20. doi: 10.1016/j.jinorgbio.2013.07.032. Epub 2013 Jul 31.

PMID:
24012017
35.

Antibiotic resistance in Zn(II)-deficient environments: metallo-β-lactamase activation in the periplasm.

Meini MR, González LJ, Vila AJ.

Future Microbiol. 2013 Aug;8(8):947-79. doi: 10.2217/fmb.13.34. No abstract available.

36.

Native Cu(A) redox sites are largely resilient to pH variations within a physiological range.

Alvarez-Paggi D, Abriata LA, Murgida DH, Vila AJ.

Chem Commun (Camb). 2013 Jun 14;49(47):5381-3. doi: 10.1039/c3cc40457a.

PMID:
23652317
37.

Electron spin density on the axial His ligand of high-spin and low-spin nitrophorin 2 probed by heteronuclear NMR spectroscopy.

Abriata LA, Zaballa ME, Berry RE, Yang F, Zhang H, Walker FA, Vila AJ.

Inorg Chem. 2013 Feb 4;52(3):1285-95. doi: 10.1021/ic301805y. Epub 2013 Jan 17.

38.

Probing the role of Met221 in the unusual metallo-β-lactamase GOB-18.

Lisa MN, Morán-Barrio J, Guindón MF, Vila AJ.

Inorg Chem. 2012 Nov 19;51(22):12419-25. doi: 10.1021/ic301801h. Epub 2012 Oct 31.

39.

Alternative ground states enable pathway switching in biological electron transfer.

Abriata LA, Álvarez-Paggi D, Ledesma GN, Blackburn NJ, Vila AJ, Murgida DH.

Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17348-53. doi: 10.1073/pnas.1204251109. Epub 2012 Oct 10.

40.

Metallo-β-lactamases withstand low Zn(II) conditions by tuning metal-ligand interactions.

González JM, Meini MR, Tomatis PE, Medrano Martín FJ, Cricco JA, Vila AJ.

Nat Chem Biol. 2012 Aug;8(8):698-700. doi: 10.1038/nchembio.1005. Epub 2012 Jun 24.

41.

Flexibility of the metal-binding region in apo-cupredoxins.

Zaballa ME, Abriata LA, Donaire A, Vila AJ.

Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9254-9. doi: 10.1073/pnas.1119460109. Epub 2012 May 29.

42.

Outer-sphere contributions to the electronic structure of type zero copper proteins.

Lancaster KM, Zaballa ME, Sproules S, Sundararajan M, DeBeer S, Richards JH, Vila AJ, Neese F, Gray HB.

J Am Chem Soc. 2012 May 16;134(19):8241-53. doi: 10.1021/ja302190r. Epub 2012 May 7.

43.

On the active site of mononuclear B1 metallo β-lactamases: a computational study.

Sgrignani J, Magistrato A, Dal Peraro M, Vila AJ, Carloni P, Pierattelli R.

J Comput Aided Mol Des. 2012 Apr;26(4):425-35. doi: 10.1007/s10822-012-9571-0. Epub 2012 Apr 25.

PMID:
22532071
44.

X-ray absorption spectroscopy of metal site speciation in the metallo-β-lactamase BcII from Bacillus cereus.

Breece RM, Llarrull LI, Tioni MF, Vila AJ, Tierney DL.

J Inorg Biochem. 2012 Jun;111:182-6. doi: 10.1016/j.jinorgbio.2011.12.013. Epub 2012 Jan 31.

45.

Carbapenem resistance in Elizabethkingia meningoseptica is mediated by metallo-β-lactamase BlaB.

González LJ, Vila AJ.

Antimicrob Agents Chemother. 2012 Apr;56(4):1686-92. doi: 10.1128/AAC.05835-11. Epub 2012 Jan 30.

46.

In vivo impact of Met221 substitution in GOB metallo-β-lactamase.

Morán-Barrio J, Lisa MN, Vila AJ.

Antimicrob Agents Chemother. 2012 Apr;56(4):1769-73. doi: 10.1128/AAC.05418-11. Epub 2012 Jan 17.

47.

Helicobacter pylori and the birth cohort effect: evidence for stabilized colonization rates in childhood.

den Hoed CM, Vila AJ, Holster IL, Perez-Perez GI, Blaser MJ, de Jongste JC, Kuipers EJ.

Helicobacter. 2011 Oct;16(5):405-9. doi: 10.1111/j.1523-5378.2011.00854.x.

48.

NMR study of the exchange coupling in the trinuclear cluster of the multicopper oxidase Fet3p.

Zaballa ME, Ziegler L, Kosman DJ, Vila AJ.

J Am Chem Soc. 2010 Aug 18;132(32):11191-6. doi: 10.1021/ja1037148.

49.

Evidence of adaptability in metal coordination geometry and active-site loop conformation among B1 metallo-beta-lactamases .

González JM, Buschiazzo A, Vila AJ.

Biochemistry. 2010 Sep 14;49(36):7930-8. doi: 10.1021/bi100894r.

PMID:
20677753
50.

First report of a Tn402-like class 1 integron carrying blaVIM-2 in Pseudomonas putida from Argentina.

Marchiaro P, Viale AM, Ballerini V, Rossignol G, Vila AJ, Limansky A.

J Infect Dev Ctries. 2010 Jun 30;4(6):412-6. No abstract available.

Supplemental Content

Support Center