Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 99

1.

Correction to: Structural and functional aspects of the interaction partners of the small heat-shock protein in Synechocystis.

Marklund EG, Zhang Y, Basha E, Benesch JLP, Vierling E.

Cell Stress Chaperones. 2018 Jul;23(4):733. doi: 10.1007/s12192-018-0901-6.

2.

Direct Measurement of S-Nitrosothiols with an Orbitrap Fusion Mass Spectrometer: S-Nitrosoglutathione Reductase as a Model Protein.

Guerra D, Truebridge I, Eyles SJ, Treffon P, Vierling E.

Methods Mol Biol. 2018;1747:143-160. doi: 10.1007/978-1-4939-7695-9_12.

PMID:
29600457
3.

Structural and functional aspects of the interaction partners of the small heat-shock protein in Synechocystis.

Marklund EG, Zhang Y, Basha E, Benesch JLP, Vierling E.

Cell Stress Chaperones. 2018 Jul;23(4):723-732. doi: 10.1007/s12192-018-0884-3. Epub 2018 Feb 23. Erratum in: Cell Stress Chaperones. 2018 May 3;:.

4.

Structural principles that enable oligomeric small heat-shock protein paralogs to evolve distinct functions.

Hochberg GKA, Shepherd DA, Marklund EG, Santhanagoplan I, Degiacomi MT, Laganowsky A, Allison TM, Basha E, Marty MT, Galpin MR, Struwe WB, Baldwin AJ, Vierling E, Benesch JLP.

Science. 2018 Feb 23;359(6378):930-935. doi: 10.1126/science.aam7229.

PMID:
29472485
5.

Mutations in eIF5B Confer Thermosensitive and Pleiotropic Phenotypes via Translation Defects in Arabidopsis thaliana.

Zhang L, Liu X, Gaikwad K, Kou X, Wang F, Tian X, Xin M, Ni Z, Sun Q, Peng H, Vierling E.

Plant Cell. 2017 Aug;29(8):1952-1969. doi: 10.1105/tpc.16.00808. Epub 2017 Aug 14.

6.

The growing world of small heat shock proteins: from structure to functions.

Carra S, Alberti S, Arrigo PA, Benesch JL, Benjamin IJ, Boelens W, Bartelt-Kirbach B, Brundel BJJM, Buchner J, Bukau B, Carver JA, Ecroyd H, Emanuelsson C, Finet S, Golenhofen N, Goloubinoff P, Gusev N, Haslbeck M, Hightower LE, Kampinga HH, Klevit RE, Liberek K, Mchaourab HS, McMenimen KA, Poletti A, Quinlan R, Strelkov SV, Toth ME, Vierling E, Tanguay RM.

Cell Stress Chaperones. 2017 Jul;22(4):601-611. doi: 10.1007/s12192-017-0787-8. Epub 2017 Mar 31. Review.

7.

Class I and II Small Heat Shock Proteins Together with HSP101 Protect Protein Translation Factors during Heat Stress.

McLoughlin F, Basha E, Fowler ME, Kim M, Bordowitz J, Katiyar-Agarwal S, Vierling E.

Plant Physiol. 2016 Oct;172(2):1221-1236. Epub 2016 Jul 29.

8.

S-Nitrosation of Conserved Cysteines Modulates Activity and Stability of S-Nitrosoglutathione Reductase (GSNOR).

Guerra D, Ballard K, Truebridge I, Vierling E.

Biochemistry. 2016 May 3;55(17):2452-64. doi: 10.1021/acs.biochem.5b01373. Epub 2016 Apr 20.

9.

A first line of stress defense: small heat shock proteins and their function in protein homeostasis.

Haslbeck M, Vierling E.

J Mol Biol. 2015 Apr 10;427(7):1537-48. doi: 10.1016/j.jmb.2015.02.002. Epub 2015 Feb 10. Review.

10.

Replica exchange molecular dynamics simulations provide insight into substrate recognition by small heat shock proteins.

Patel S, Vierling E, Tama F.

Biophys J. 2014 Jun 17;106(12):2644-55. doi: 10.1016/j.bpj.2014.04.048.

11.

S-nitrosoglutathione reductases are low-copy number, cysteine-rich proteins in plants that control multiple developmental and defense responses in Arabidopsis.

Xu S, Guerra D, Lee U, Vierling E.

Front Plant Sci. 2013 Nov 5;4:430. doi: 10.3389/fpls.2013.00430. eCollection 2013.

12.

An unusual dimeric small heat shock protein provides insight into the mechanism of this class of chaperones.

Basha E, Jones C, Blackwell AE, Cheng G, Waters ER, Samsel KA, Siddique M, Pett V, Wysocki V, Vierling E.

J Mol Biol. 2013 May 27;425(10):1683-96. doi: 10.1016/j.jmb.2013.02.011. Epub 2013 Feb 14.

13.
14.

Dissecting heterogeneous molecular chaperone complexes using a mass spectrum deconvolution approach.

Stengel F, Baldwin AJ, Bush MF, Hilton GR, Lioe H, Basha E, Jaya N, Vierling E, Benesch JL.

Chem Biol. 2012 May 25;19(5):599-607. doi: 10.1016/j.chembiol.2012.04.007.

15.

Small heat shock proteins and α-crystallins: dynamic proteins with flexible functions.

Basha E, O'Neill H, Vierling E.

Trends Biochem Sci. 2012 Mar;37(3):106-17. doi: 10.1016/j.tibs.2011.11.005. Epub 2011 Dec 14.

16.

The quaternary organization and dynamics of the molecular chaperone HSP26 are thermally regulated.

Benesch JL, Aquilina JA, Baldwin AJ, Rekas A, Stengel F, Lindner RA, Basha E, Devlin GL, Horwitz J, Vierling E, Carver JA, Robinson CV.

Chem Biol. 2010 Sep 24;17(9):1008-17. doi: 10.1016/j.chembiol.2010.06.016.

17.

Mechanistic differences between two conserved classes of small heat shock proteins found in the plant cytosol.

Basha E, Jones C, Wysocki V, Vierling E.

J Biol Chem. 2010 Apr 9;285(15):11489-97. doi: 10.1074/jbc.M109.074088. Epub 2010 Feb 9.

18.

Quaternary dynamics and plasticity underlie small heat shock protein chaperone function.

Stengel F, Baldwin AJ, Painter AJ, Jaya N, Basha E, Kay LE, Vierling E, Robinson CV, Benesch JL.

Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2007-12. doi: 10.1073/pnas.0910126107. Epub 2010 Jan 19.

19.

Substrate binding site flexibility of the small heat shock protein molecular chaperones.

Jaya N, Garcia V, Vierling E.

Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15604-9. doi: 10.1073/pnas.0902177106. Epub 2009 Aug 26.

20.

Insights into small heat shock protein and substrate structure during chaperone action derived from hydrogen/deuterium exchange and mass spectrometry.

Cheng G, Basha E, Wysocki VH, Vierling E.

J Biol Chem. 2008 Sep 26;283(39):26634-42. doi: 10.1074/jbc.M802946200. Epub 2008 Jul 11.

21.

A mutant small heat shock protein with increased thylakoid association provides an elevated resistance against UV-B damage in synechocystis 6803.

Balogi Z, Cheregi O, Giese KC, Juhász K, Vierling E, Vass I, Vígh L, Horváth I.

J Biol Chem. 2008 Aug 22;283(34):22983-91. doi: 10.1074/jbc.M710400200. Epub 2008 Jun 23.

22.

The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties.

Siddique M, Gernhard S, von Koskull-Döring P, Vierling E, Scharf KD.

Cell Stress Chaperones. 2008 Summer;13(2):183-97. doi: 10.1007/s12192-008-0032-6. Epub 2008 Mar 28.

23.

Real-time monitoring of protein complexes reveals their quaternary organization and dynamics.

Painter AJ, Jaya N, Basha E, Vierling E, Robinson CV, Benesch JL.

Chem Biol. 2008 Mar;15(3):246-53. doi: 10.1016/j.chembiol.2008.01.009.

24.

Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis.

Lee U, Wie C, Fernandez BO, Feelisch M, Vierling E.

Plant Cell. 2008 Mar;20(3):786-802. doi: 10.1105/tpc.107.052647. Epub 2008 Mar 7.

25.

Heat shock protein 101 effects in A. thaliana: genetic variation, fitness and pleiotropy in controlled temperature conditions.

Tonsor SJ, Scott C, Boumaza I, Liss TR, Brodsky JL, Vierling E.

Mol Ecol. 2008 Mar;17(6):1614-26. doi: 10.1111/j.1365-294X.2008.03690.x.

26.

Core genome responses involved in acclimation to high temperature.

Larkindale J, Vierling E.

Plant Physiol. 2008 Feb;146(2):748-61. Epub 2007 Nov 30.

27.

A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis.

Schramm F, Larkindale J, Kiehlmann E, Ganguli A, Englich G, Vierling E, von Koskull-Döring P.

Plant J. 2008 Jan;53(2):264-74. Epub 2007 Nov 12.

28.

A rhizosphere fungus enhances Arabidopsis thermotolerance through production of an HSP90 inhibitor.

McLellan CA, Turbyville TJ, Wijeratne EM, Kerschen A, Vierling E, Queitsch C, Whitesell L, Gunatilaka AA.

Plant Physiol. 2007 Sep;145(1):174-82. Epub 2007 Jul 13.

29.

Complexity of the heat stress response in plants.

Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD.

Curr Opin Plant Biol. 2007 Jun;10(3):310-6. Epub 2007 May 4. Review.

PMID:
17482504
30.

A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis.

Kotak S, Vierling E, Bäumlein H, von Koskull-Döring P.

Plant Cell. 2007 Jan;19(1):182-95. Epub 2007 Jan 12.

31.

Arabidopsis hot2 encodes an endochitinase-like protein that is essential for tolerance to heat, salt and drought stresses.

Kwon Y, Kim SH, Jung MS, Kim MS, Oh JE, Ju HW, Kim KI, Vierling E, Lee H, Hong SW.

Plant J. 2007 Jan;49(2):184-93. Epub 2006 Dec 6.

32.

The Arabidopsis ClpB/Hsp100 family of proteins: chaperones for stress and chloroplast development.

Lee U, Rioflorido I, Hong SW, Larkindale J, Waters ER, Vierling E.

Plant J. 2007 Jan;49(1):115-27. Epub 2006 Nov 28.

33.

The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity.

Basha E, Friedrich KL, Vierling E.

J Biol Chem. 2006 Dec 29;281(52):39943-52. Epub 2006 Nov 7.

34.

Evidence for an essential function of the N terminus of a small heat shock protein in vivo, independent of in vitro chaperone activity.

Giese KC, Basha E, Catague BY, Vierling E.

Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):18896-901. Epub 2005 Dec 19.

35.

Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance.

Larkindale J, Hall JD, Knight MR, Vierling E.

Plant Physiol. 2005 Jun;138(2):882-97. Epub 2005 May 27.

36.

"Heat shock lipid" in cyanobacteria during heat/light-acclimation.

Balogi Z, Török Z, Balogh G, Jósvay K, Shigapova N, Vierling E, Vígh L, Horváth I.

Arch Biochem Biophys. 2005 Apr 15;436(2):346-54.

PMID:
15797247
37.

Genetic analysis reveals domain interactions of Arabidopsis Hsp100/ClpB and cooperation with the small heat shock protein chaperone system.

Lee U, Wie C, Escobar M, Williams B, Hong SW, Vierling E.

Plant Cell. 2005 Feb;17(2):559-71. Epub 2005 Jan 19.

38.

Mutants in a small heat shock protein that affect the oligomeric state. Analysis and allele-specific suppression.

Giese KC, Vierling E.

J Biol Chem. 2004 Jul 30;279(31):32674-83. Epub 2004 May 19.

39.

Evidence for an unfolding/threading mechanism for protein disaggregation by Saccharomyces cerevisiae Hsp104.

Lum R, Tkach JM, Vierling E, Glover JR.

J Biol Chem. 2004 Jul 9;279(28):29139-46. Epub 2004 May 5.

40.

Analysis of natural allelic variation of Arabidopsis seed germination and seed longevity traits between the accessions Landsberg erecta and Shakdara, using a new recombinant inbred line population.

Clerkx EJ, El-Lithy ME, Vierling E, Ruys GJ, Blankestijn-De Vries H, Groot SP, Vreugdenhil D, Koornneef M.

Plant Physiol. 2004 May;135(1):432-43. Epub 2004 Apr 30.

41.

Chaperone activity of cytosolic small heat shock proteins from wheat.

Basha E, Lee GJ, Demeler B, Vierling E.

Eur J Biochem. 2004 Apr;271(8):1426-36.

42.

The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions.

Basha E, Lee GJ, Breci LA, Hausrath AC, Buan NR, Giese KC, Vierling E.

J Biol Chem. 2004 Feb 27;279(9):7566-75. Epub 2003 Dec 8.

43.

Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation.

Mogk A, Deuerling E, Vorderwülbecke S, Vierling E, Bukau B.

Mol Microbiol. 2003 Oct;50(2):585-95.

44.

Interactions between small heat shock protein subunits and substrate in small heat shock protein-substrate complexes.

Friedrich KL, Giese KC, Buan NR, Vierling E.

J Biol Chem. 2004 Jan 9;279(2):1080-9. Epub 2003 Oct 22.

45.

Solution structure and dynamics of a heat shock protein assembly probed by hydrogen exchange and mass spectrometry.

Wintrode PL, Friedrich KL, Vierling E, Smith JB, Smith DL.

Biochemistry. 2003 Sep 16;42(36):10667-73.

PMID:
12962491
46.

Arabidopsis UVH6, a homolog of human XPD and yeast RAD3 DNA repair genes, functions in DNA repair and is essential for plant growth.

Liu Z, Hong SW, Escobar M, Vierling E, Mitchell DL, Mount DW, Hall JD.

Plant Physiol. 2003 Jul;132(3):1405-14.

47.

Arabidopsis hot mutants define multiple functions required for acclimation to high temperatures.

Hong SW, Lee U, Vierling E.

Plant Physiol. 2003 Jun;132(2):757-67. Epub 2003 Apr 17.

48.

Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK.

Mogk A, Schlieker C, Friedrich KL, Schönfeld HJ, Vierling E, Bukau B.

J Biol Chem. 2003 Aug 15;278(33):31033-42. Epub 2003 Jun 4.

49.

Small heat-shock proteins regulate membrane lipid polymorphism.

Tsvetkova NM, Horváth I, Török Z, Wolkers WF, Balogi Z, Shigapova N, Crowe LM, Tablin F, Vierling E, Crowe JH, Vigh L.

Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13504-9. Epub 2002 Oct 4.

50.

Supplemental Content

Loading ...
Support Center