Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 40

1.

Orchestrating cell morphology from the inside out - using polarized cell expansion in plants as a model.

Orr RG, Cheng X, Vidali L, Bezanilla M.

Curr Opin Cell Biol. 2019 Sep 19;62:46-53. doi: 10.1016/j.ceb.2019.08.004. [Epub ahead of print] Review.

PMID:
31546159
2.

Automated Image Acquisition and Morphological Analysis of Cell Growth Mutants in Physcomitrella patens.

Galotto G, Bibeau JP, Vidali L.

Methods Mol Biol. 2019;1992:307-322. doi: 10.1007/978-1-4939-9469-4_20.

PMID:
31148047
3.

Unique Molecular Identifiers reveal a novel sequencing artefact with implications for RNA-Seq based gene expression analysis.

Sena JA, Galotto G, Devitt NP, Connick MC, Jacobi JL, Umale PE, Vidali L, Bell CJ.

Sci Rep. 2018 Sep 3;8(1):13121. doi: 10.1038/s41598-018-31064-7.

4.

Conditional genetic screen in Physcomitrella patens reveals a novel microtubule depolymerizing-end-tracking protein.

Ding X, Pervere LM, Bascom C Jr, Bibeau JP, Khurana S, Butt AM, Orr RG, Flaherty PJ, Bezanilla M, Vidali L.

PLoS Genet. 2018 May 10;14(5):e1007221. doi: 10.1371/journal.pgen.1007221. eCollection 2018 May.

5.

Characterization of Cell Boundary and Confocal Effects Improves Quantitative FRAP Analysis.

Kingsley JL, Bibeau JP, Mousavi SI, Unsal C, Chen Z, Huang X, Vidali L, Tüzel E.

Biophys J. 2018 Mar 13;114(5):1153-1164. doi: 10.1016/j.bpj.2018.01.013.

6.

Myosin XI localizes at the mitotic spindle and along the cell plate during plant cell division in Physcomitrella patens.

Sun H, Furt F, Vidali L.

Biochem Biophys Res Commun. 2018 Nov 25;506(2):409-421. doi: 10.1016/j.bbrc.2018.01.082. Epub 2018 Jan 12.

PMID:
29339158
7.

Direct observation of the effects of cellulose synthesis inhibitors using live cell imaging of Cellulose Synthase (CESA) in Physcomitrella patens.

Tran ML, McCarthy TW, Sun H, Wu SZ, Norris JH, Bezanilla M, Vidali L, Anderson CT, Roberts AW.

Sci Rep. 2018 Jan 15;8(1):735. doi: 10.1038/s41598-017-18994-4.

8.

F-Actin Mediated Focusing of Vesicles at the Cell Tip Is Essential for Polarized Growth.

Bibeau JP, Kingsley JL, Furt F, Tüzel E, Vidali L.

Plant Physiol. 2018 Jan;176(1):352-363. doi: 10.1104/pp.17.00753. Epub 2017 Oct 2.

9.

The kinesin-like proteins, KAC1/2, regulate actin dynamics underlying chloroplast light-avoidance in Physcomitrella patens.

Shen Z, Liu YC, Bibeau JP, Lemoi KP, Tüzel E, Vidali L.

J Integr Plant Biol. 2015 Jan;57(1):106-19. doi: 10.1111/jipb.12303.

PMID:
25351786
10.

Morphological analysis of cell growth mutants in Physcomitrella.

Bibeau JP, Vidali L.

Methods Mol Biol. 2014;1080:201-13. doi: 10.1007/978-1-62703-643-6_17.

PMID:
24132431
11.

Phylogenetic analysis of the Kinesin superfamily from physcomitrella.

Shen Z, Collatos AR, Bibeau JP, Furt F, Vidali L.

Front Plant Sci. 2012 Oct 16;3:230. doi: 10.3389/fpls.2012.00230. eCollection 2012.

12.

Physcomitrella patens: a model for tip cell growth and differentiation.

Vidali L, Bezanilla M.

Curr Opin Plant Biol. 2012 Dec;15(6):625-31. doi: 10.1016/j.pbi.2012.09.008. Epub 2012 Sep 26. Review.

PMID:
23022392
13.

Apical myosin XI anticipates F-actin during polarized growth of Physcomitrella patens cells.

Furt F, Liu YC, Bibeau JP, Tüzel E, Vidali L.

Plant J. 2013 Feb;73(3):417-28. doi: 10.1111/tpj.12039. Epub 2012 Nov 26.

14.

Quantitative analysis of organelle distribution and dynamics in Physcomitrella patens protonemal cells.

Furt F, Lemoi K, Tüzel E, Vidali L.

BMC Plant Biol. 2012 May 17;12:70. doi: 10.1186/1471-2229-12-70.

15.

Actin interacting protein1 and actin depolymerizing factor drive rapid actin dynamics in Physcomitrella patens.

Augustine RC, Pattavina KA, Tüzel E, Vidali L, Bezanilla M.

Plant Cell. 2011 Oct;23(10):3696-710. doi: 10.1105/tpc.111.090753. Epub 2011 Oct 14.

16.

Efficient polyethylene glycol (PEG) mediated transformation of the moss Physcomitrella patens.

Liu YC, Vidali L.

J Vis Exp. 2011 Apr 19;(50). pii: 2560. doi: 10.3791/2560.

17.

Myosin XI is essential for tip growth in Physcomitrella patens.

Vidali L, Burkart GM, Augustine RC, Kerdavid E, Tüzel E, Bezanilla M.

Plant Cell. 2010 Jun;22(6):1868-82. doi: 10.1105/tpc.109.073288. Epub 2010 Jun 4.

18.

Exocytosis precedes and predicts the increase in growth in oscillating pollen tubes.

McKenna ST, Kunkel JG, Bosch M, Rounds CM, Vidali L, Winship LJ, Hepler PK.

Plant Cell. 2009 Oct;21(10):3026-40. doi: 10.1105/tpc.109.069260. Epub 2009 Oct 27.

19.

Rapid screening for temperature-sensitive alleles in plants.

Vidali L, Augustine RC, Fay SN, Franco P, Pattavina KA, Bezanilla M.

Plant Physiol. 2009 Oct;151(2):506-14. doi: 10.1104/pp.109.143727. Epub 2009 Aug 7.

20.

Rapid formin-mediated actin-filament elongation is essential for polarized plant cell growth.

Vidali L, van Gisbergen PA, Guérin C, Franco P, Li M, Burkart GM, Augustine RC, Blanchoin L, Bezanilla M.

Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13341-6. doi: 10.1073/pnas.0901170106. Epub 2009 Jul 24.

21.

Lifeact-mEGFP reveals a dynamic apical F-actin network in tip growing plant cells.

Vidali L, Rounds CM, Hepler PK, Bezanilla M.

PLoS One. 2009 May 29;4(5):e5744. doi: 10.1371/journal.pone.0005744.

22.

Endogenous RhoG is dispensable for integrin-mediated cell spreading but contributes to Rac-independent migration.

Meller J, Vidali L, Schwartz MA.

J Cell Sci. 2008 Jun 15;121(Pt 12):1981-9. doi: 10.1242/jcs.025130. Epub 2008 May 27.

23.

Actin depolymerizing factor is essential for viability in plants, and its phosphoregulation is important for tip growth.

Augustine RC, Vidali L, Kleinman KP, Bezanilla M.

Plant J. 2008 Jun;54(5):863-75. doi: 10.1111/j.1365-313X.2008.03451.x. Epub 2008 Feb 22.

24.

Tyrosine phosphatase PTPalpha regulates focal adhesion remodeling through Rac1 activation.

Herrera Abreu MT, Penton PC, Kwok V, Vachon E, Shalloway D, Vidali L, Lee W, McCulloch CA, Downey GP.

Am J Physiol Cell Physiol. 2008 Apr;294(4):C931-44. doi: 10.1152/ajpcell.00359.2007. Epub 2008 Jan 23.

25.

Profilin is essential for tip growth in the moss Physcomitrella patens.

Vidali L, Augustine RC, Kleinman KP, Bezanilla M.

Plant Cell. 2007 Nov;19(11):3705-22. Epub 2007 Nov 2.

26.

Filamin A (FLNA) is required for cell-cell contact in vascular development and cardiac morphogenesis.

Feng Y, Chen MH, Moskowitz IP, Mendonza AM, Vidali L, Nakamura F, Kwiatkowski DJ, Walsh CA.

Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19836-41. Epub 2006 Dec 15.

27.

Rac1-null mouse embryonic fibroblasts are motile and respond to platelet-derived growth factor.

Vidali L, Chen F, Cicchetti G, Ohta Y, Kwiatkowski DJ.

Mol Biol Cell. 2006 May;17(5):2377-90. Epub 2006 Mar 8.

28.

Profilin inhibits pollen tube growth through actin-binding, but not poly-L-proline-binding.

McKenna ST, Vidali L, Hepler PK.

Planta. 2004 Apr;218(6):906-15. Epub 2004 Jan 8.

PMID:
14712393
29.

Plant 115-kDa actin-filament bundling protein, P-115-ABP, is a homologue of plant villin and is widely distributed in cells.

Yokota E, Vidali L, Tominaga M, Tahara H, Orii H, Morizane Y, Hepler PK, Shimmen T.

Plant Cell Physiol. 2003 Oct;44(10):1088-99.

PMID:
14581634
30.

Nuclear localization of profilin during the cell cycle in Tradescantia virginiana stamen hair cells.

Valster AH, Vidali L, Hepler PK.

Protoplasma. 2003 Sep;222(1-2):85-95.

PMID:
14513314
31.

The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes.

Chen CY, Wong EI, Vidali L, Estavillo A, Hepler PK, Wu HM, Cheung AY.

Plant Cell. 2002 Sep;14(9):2175-90.

32.

Rab2 GTPase regulates vesicle trafficking between the endoplasmic reticulum and the Golgi bodies and is important to pollen tube growth.

Cheung AY, Chen CY, Glaven RH, de Graaf BH, Vidali L, Hepler PK, Wu HM.

Plant Cell. 2002 Apr;14(4):945-62.

33.

Actin and pollen tube growth.

Vidali L, Hepler PK.

Protoplasma. 2001;215(1-4):64-76. Review.

PMID:
11732066
34.

Polarized cell growth in higher plants.

Hepler PK, Vidali L, Cheung AY.

Annu Rev Cell Dev Biol. 2001;17:159-87. Review.

PMID:
11687487
35.

Actin polymerization is essential for pollen tube growth.

Vidali L, McKenna ST, Hepler PK.

Mol Biol Cell. 2001 Aug;12(8):2534-45.

36.
37.

Profilin in Phaseolus vulgaris is encoded by two genes (only one expressed in root nodules) but multiple isoforms are generated in vivo by phosphorylation on tyrosine residues.

Guillén G, Valdés-López V, Noguez R, Olivares J, Rodríguez-Zapata LC, Pérez H, Vidali L, Villanueva MA, Sánchez F.

Plant J. 1999 Sep;19(5):497-508.

38.

Rearrangement of actin microfilaments in plant root hairs responding to rhizobium etli nodulation signals

Crdenas L, Vidali L, Domnguez J, Prez H, Snchez F, Hepler PK, Quinto C.

Plant Physiol. 1998 Mar;116(3):871-7.

39.

Characterization and localization of profilin in pollen grains and tubes of Lilium longiflorum.

Vidali L, Hepler PK.

Cell Motil Cytoskeleton. 1997;36(4):323-38.

PMID:
9096955
40.

Purification, characterization, and cDNA cloning of profilin from Phaseolus vulgaris.

Vidali L, Pérez HE, Valdés López V, Noguez R, Zamudio F, Sánchez F.

Plant Physiol. 1995 May;108(1):115-23.

Supplemental Content

Loading ...
Support Center