Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 54

1.

The poly-SUMO2/3 protease SENP6 enables assembly of the constitutive centromere-associated network by group deSUMOylation.

Liebelt F, Jansen NS, Kumar S, Gracheva E, Claessens LA, Verlaan-de Vries M, Willemstein E, Vertegaal ACO.

Nat Commun. 2019 Sep 4;10(1):3987. doi: 10.1038/s41467-019-11773-x.

2.

Chemical Tools and Biochemical Assays for SUMO Specific Proteases (SENPs).

Jia Y, Claessens LA, Vertegaal ACO, Ovaa H.

ACS Chem Biol. 2019 Aug 5. doi: 10.1021/acschembio.9b00402. [Epub ahead of print]

PMID:
31361113
3.

Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies.

Sha Z, Blyszcz T, González-Prieto R, Vertegaal ACO, Goldberg AL.

J Biol Chem. 2019 Jul 8. pii: jbc.RA119.009147. doi: 10.1074/jbc.RA119.009147. [Epub ahead of print]

4.

WWP2 ubiquitylates RNA polymerase II for DNA-PK-dependent transcription arrest and repair at DNA breaks.

Caron P, Pankotai T, Wiegant WW, Tollenaere MAX, Furst A, Bonhomme C, Helfricht A, de Groot A, Pastink A, Vertegaal ACO, Luijsterburg MS, Soutoglou E, van Attikum H.

Genes Dev. 2019 Jun 1;33(11-12):684-704. doi: 10.1101/gad.321943.118. Epub 2019 May 2.

5.

USP7: combining tools towards selectivity.

Gjonaj L, Sapmaz A, González-Prieto R, Vertegaal ACO, Flierman D, Ovaa H.

Chem Commun (Camb). 2019 Apr 25;55(35):5075-5078. doi: 10.1039/c9cc00969h.

PMID:
30972393
6.

SUMOylation and the HSF1-Regulated Chaperone Network Converge to Promote Proteostasis in Response to Heat Shock.

Liebelt F, Sebastian RM, Moore CL, Mulder MPC, Ovaa H, Shoulders MD, Vertegaal ACO.

Cell Rep. 2019 Jan 2;26(1):236-249.e4. doi: 10.1016/j.celrep.2018.12.027.

7.

Total Chemical Synthesis of SUMO and SUMO-Based Probes for Profiling the Activity of SUMO-Specific Proteases.

Mulder MPC, Merkx R, Witting KF, Hameed DS, El Atmioui D, Lelieveld L, Liebelt F, Neefjes J, Berlin I, Vertegaal ACO, Ovaa H.

Angew Chem Int Ed Engl. 2018 Jul 16;57(29):8958-8962. doi: 10.1002/anie.201803483. Epub 2018 Jun 14.

8.

Probing ubiquitin and SUMO conjugation and deconjugation.

Ovaa H, Vertegaal ACO.

Biochem Soc Trans. 2018 Apr 17;46(2):423-436. doi: 10.1042/BST20170086. Epub 2018 Mar 27. Review.

PMID:
29588386
9.

SUMO targets the APC/C to regulate transition from metaphase to anaphase.

Eifler K, Cuijpers SAG, Willemstein E, Raaijmakers JA, El Atmioui D, Ovaa H, Medema RH, Vertegaal ACO.

Nat Commun. 2018 Mar 16;9(1):1119. doi: 10.1038/s41467-018-03486-4.

10.

Guiding Mitotic Progression by Crosstalk between Post-translational Modifications.

Cuijpers SAG, Vertegaal ACO.

Trends Biochem Sci. 2018 Apr;43(4):251-268. doi: 10.1016/j.tibs.2018.02.004. Epub 2018 Feb 24. Review.

PMID:
29486978
11.

The STUbL RNF4 regulates protein group SUMOylation by targeting the SUMO conjugation machinery.

Kumar R, González-Prieto R, Xiao Z, Verlaan-de Vries M, Vertegaal ACO.

Nat Commun. 2017 Nov 27;8(1):1809. doi: 10.1038/s41467-017-01900-x.

12.

Functional analyses of a human vascular tumor FOS variant identify a novel degradation mechanism and a link to tumorigenesis.

van IJzendoorn DGP, Forghany Z, Liebelt F, Vertegaal AC, Jochemsen AG, Bovée JVMG, Szuhai K, Baker DA.

J Biol Chem. 2017 Dec 29;292(52):21282-21290. doi: 10.1074/jbc.C117.815845. Epub 2017 Nov 17.

13.

Proteomics Reveals Global Regulation of Protein SUMOylation by ATM and ATR Kinases during Replication Stress.

Munk S, Sigurðsson JO, Xiao Z, Batth TS, Franciosa G, von Stechow L, Lopez-Contreras AJ, Vertegaal ACO, Olsen JV.

Cell Rep. 2017 Oct 10;21(2):546-558. doi: 10.1016/j.celrep.2017.09.059.

14.

Converging Small Ubiquitin-like Modifier (SUMO) and Ubiquitin Signaling: Improved Methodology Identifies Co-modified Target Proteins.

Cuijpers SAG, Willemstein E, Vertegaal ACO.

Mol Cell Proteomics. 2017 Dec;16(12):2281-2295. doi: 10.1074/mcp.TIR117.000152. Epub 2017 Sep 26.

15.

Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation.

Hendriks IA, Lyon D, Young C, Jensen LJ, Vertegaal AC, Nielsen ML.

Nat Struct Mol Biol. 2017 Mar;24(3):325-336. doi: 10.1038/nsmb.3366. Epub 2017 Jan 23.

PMID:
28112733
16.

Label-Free Identification and Quantification of SUMO Target Proteins.

Hendriks IA, Vertegaal AC.

Methods Mol Biol. 2016;1475:171-93. doi: 10.1007/978-1-4939-6358-4_13.

PMID:
27631806
17.

A high-yield double-purification proteomics strategy for the identification of SUMO sites.

Hendriks IA, Vertegaal AC.

Nat Protoc. 2016 Sep;11(9):1630-49. doi: 10.1038/nprot.2016.082. Epub 2016 Aug 11.

PMID:
27560170
18.

A comprehensive compilation of SUMO proteomics.

Hendriks IA, Vertegaal AC.

Nat Rev Mol Cell Biol. 2016 Sep;17(9):581-95. doi: 10.1038/nrm.2016.81. Epub 2016 Jul 20.

PMID:
27435506
19.

Ubiquitin-dependent and independent roles of SUMO in proteostasis.

Liebelt F, Vertegaal AC.

Am J Physiol Cell Physiol. 2016 Aug 1;311(2):C284-96. doi: 10.1152/ajpcell.00091.2016. Epub 2016 Jun 22. Review.

20.

A cascading activity-based probe sequentially targets E1-E2-E3 ubiquitin enzymes.

Mulder MP, Witting K, Berlin I, Pruneda JN, Wu KP, Chang JG, Merkx R, Bialas J, Groettrup M, Vertegaal AC, Schulman BA, Komander D, Neefjes J, El Oualid F, Ovaa H.

Nat Chem Biol. 2016 Jul;12(7):523-30. doi: 10.1038/nchembio.2084. Epub 2016 May 16.

21.

PARP1 Links CHD2-Mediated Chromatin Expansion and H3.3 Deposition to DNA Repair by Non-homologous End-Joining.

Luijsterburg MS, de Krijger I, Wiegant WW, Shah RG, Smeenk G, de Groot AJL, Pines A, Vertegaal ACO, Jacobs JJL, Shah GM, van Attikum H.

Mol Cell. 2016 Feb 18;61(4):547-562. doi: 10.1016/j.molcel.2016.01.019.

22.

SUMOylation-Mediated Regulation of Cell Cycle Progression and Cancer.

Eifler K, Vertegaal ACO.

Trends Biochem Sci. 2015 Dec;40(12):779-793. doi: 10.1016/j.tibs.2015.09.006. Epub 2015 Oct 22. Review.

23.

Mapping the SUMOylated landscape.

Eifler K, Vertegaal AC.

FEBS J. 2015 Oct;282(19):3669-80. doi: 10.1111/febs.13378. Epub 2015 Jul 31. Review.

24.

SUMO in the DNA damage response.

Hendriks IA, Vertegaal AC.

Oncotarget. 2015 Jun 30;6(18):15734-5. No abstract available.

25.

System-wide identification of wild-type SUMO-2 conjugation sites.

Hendriks IA, D'Souza RC, Chang JG, Mann M, Vertegaal AC.

Nat Commun. 2015 Jun 15;6:7289. doi: 10.1038/ncomms8289.

26.

Ubiquitin-specific Protease 11 (USP11) Deubiquitinates Hybrid Small Ubiquitin-like Modifier (SUMO)-Ubiquitin Chains to Counteract RING Finger Protein 4 (RNF4).

Hendriks IA, Schimmel J, Eifler K, Olsen JV, Vertegaal AC.

J Biol Chem. 2015 Jun 19;290(25):15526-37. doi: 10.1074/jbc.M114.618132. Epub 2015 May 12.

27.

c-Myc is targeted to the proteasome for degradation in a SUMOylation-dependent manner, regulated by PIAS1, SENP7 and RNF4.

González-Prieto R, Cuijpers SA, Kumar R, Hendriks IA, Vertegaal AC.

Cell Cycle. 2015;14(12):1859-72. doi: 10.1080/15384101.2015.1040965.

28.

SUMO-2 Orchestrates Chromatin Modifiers in Response to DNA Damage.

Hendriks IA, Treffers LW, Verlaan-de Vries M, Olsen JV, Vertegaal ACO.

Cell Rep. 2015 Mar 17;10(10):1778-1791. doi: 10.1016/j.celrep.2015.02.033. Epub 2015 Mar 12.

29.

System-wide Analysis of SUMOylation Dynamics in Response to Replication Stress Reveals Novel Small Ubiquitin-like Modified Target Proteins and Acceptor Lysines Relevant for Genome Stability.

Xiao Z, Chang JG, Hendriks IA, Sigurðsson JO, Olsen JV, Vertegaal AC.

Mol Cell Proteomics. 2015 May;14(5):1419-34. doi: 10.1074/mcp.O114.044792. Epub 2015 Mar 9.

30.

SUMOylation and PARylation cooperate to recruit and stabilize SLX4 at DNA damage sites.

González-Prieto R, Cuijpers SA, Luijsterburg MS, van Attikum H, Vertegaal AC.

EMBO Rep. 2015 Apr;16(4):512-9. doi: 10.15252/embr.201440017. Epub 2015 Feb 26.

31.

Uncovering global SUMOylation signaling networks in a site-specific manner.

Hendriks IA, D'Souza RC, Yang B, Verlaan-de Vries M, Mann M, Vertegaal AC.

Nat Struct Mol Biol. 2014 Oct;21(10):927-36. doi: 10.1038/nsmb.2890. Epub 2014 Sep 14.

32.

Uncovering SUMOylation dynamics during cell-cycle progression reveals FoxM1 as a key mitotic SUMO target protein.

Schimmel J, Eifler K, Sigurðsson JO, Cuijpers SA, Hendriks IA, Verlaan-de Vries M, Kelstrup CD, Francavilla C, Medema RH, Olsen JV, Vertegaal AC.

Mol Cell. 2014 Mar 20;53(6):1053-66. doi: 10.1016/j.molcel.2014.02.001. Epub 2014 Feb 27.

33.

Remodeling and spacing factor 1 (RSF1) deposits centromere proteins at DNA double-strand breaks to promote non-homologous end-joining.

Helfricht A, Wiegant WW, Thijssen PE, Vertegaal AC, Luijsterburg MS, van Attikum H.

Cell Cycle. 2013 Sep 15;12(18):3070-82. doi: 10.4161/cc.26033. Epub 2013 Aug 20.

34.

RNF4 is required for DNA double-strand break repair in vivo.

Vyas R, Kumar R, Clermont F, Helfricht A, Kalev P, Sotiropoulou P, Hendriks IA, Radaelli E, Hochepied T, Blanpain C, Sablina A, van Attikum H, Olsen JV, Jochemsen AG, Vertegaal AC, Marine JC.

Cell Death Differ. 2013 Mar;20(3):490-502. doi: 10.1038/cdd.2012.145. Epub 2012 Nov 30.

35.

RNF12 controls embryonic stem cell fate and morphogenesis in zebrafish embryos by targeting Smad7 for degradation.

Zhang L, Huang H, Zhou F, Schimmel J, Pardo CG, Zhang T, Barakat TS, Sheppard KA, Mickanin C, Porter JA, Vertegaal AC, van Dam H, Gribnau J, Lu CX, ten Dijke P.

Mol Cell. 2012 Jun 8;46(5):650-61. doi: 10.1016/j.molcel.2012.04.003. Epub 2012 May 3. Erratum in: Mol Cell. 2012 Jul 27;47(2):330.

36.

Uncovering ubiquitin and ubiquitin-like signaling networks.

Vertegaal AC.

Chem Rev. 2011 Dec 14;111(12):7923-40. doi: 10.1021/cr200187e. Epub 2011 Oct 17. Review. No abstract available.

37.

Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif.

Matic I, Schimmel J, Hendriks IA, van Santen MA, van de Rijke F, van Dam H, Gnad F, Mann M, Vertegaal AC.

Mol Cell. 2010 Aug 27;39(4):641-52. doi: 10.1016/j.molcel.2010.07.026.

38.

Positively charged amino acids flanking a sumoylation consensus tetramer on the 110kDa tri-snRNP component SART1 enhance sumoylation efficiency.

Schimmel J, Balog CI, Deelder AM, Drijfhout JW, Hensbergen PJ, Vertegaal AC.

J Proteomics. 2010 Jun 16;73(8):1523-34. doi: 10.1016/j.jprot.2010.03.008. Epub 2010 Mar 24.

PMID:
20346425
39.

SUMO chains: polymeric signals.

Vertegaal AC.

Biochem Soc Trans. 2010 Feb;38(Pt 1):46-9. doi: 10.1042/BST0380046.

PMID:
20074033
40.

RNF4 and VHL regulate the proteasomal degradation of SUMO-conjugated Hypoxia-Inducible Factor-2alpha.

van Hagen M, Overmeer RM, Abolvardi SS, Vertegaal AC.

Nucleic Acids Res. 2010 Apr;38(6):1922-31. doi: 10.1093/nar/gkp1157. Epub 2009 Dec 21.

41.

Telomeric DNA mediates de novo PML body formation.

Brouwer AK, Schimmel J, Wiegant JC, Vertegaal AC, Tanke HJ, Dirks RW.

Mol Biol Cell. 2009 Nov;20(22):4804-15. doi: 10.1091/mbc.E09-04-0309. Epub 2009 Sep 30.

42.

Identification of SUMO target proteins by quantitative proteomics.

Andersen JS, Matic I, Vertegaal AC.

Methods Mol Biol. 2009;497:19-31. doi: 10.1007/978-1-59745-566-4_2. Review.

PMID:
19107408
43.

The ubiquitin-proteasome system is a key component of the SUMO-2/3 cycle.

Schimmel J, Larsen KM, Matic I, van Hagen M, Cox J, Mann M, Andersen JS, Vertegaal AC.

Mol Cell Proteomics. 2008 Nov;7(11):2107-22. doi: 10.1074/mcp.M800025-MCP200. Epub 2008 Jun 18.

44.

Identification of a new site of sumoylation on Tel (ETV6) uncovers a PIAS-dependent mode of regulating Tel function.

Roukens MG, Alloul-Ramdhani M, Vertegaal AC, Anvarian Z, Balog CI, Deelder AM, Hensbergen PJ, Baker DA.

Mol Cell Biol. 2008 Apr;28(7):2342-57. doi: 10.1128/MCB.01159-07. Epub 2008 Jan 22.

45.

Small ubiquitin-related modifiers in chains.

Vertegaal AC.

Biochem Soc Trans. 2007 Dec;35(Pt 6):1422-3. Review.

PMID:
18031236
46.

In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy.

Matic I, van Hagen M, Schimmel J, Macek B, Ogg SC, Tatham MH, Hay RT, Lamond AI, Mann M, Vertegaal ACO.

Mol Cell Proteomics. 2008 Jan;7(1):132-44. doi: 10.1074/mcp.M700173-MCP200. Epub 2007 Oct 15.

47.

Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics.

Vertegaal AC, Andersen JS, Ogg SC, Hay RT, Mann M, Lamond AI.

Mol Cell Proteomics. 2006 Dec;5(12):2298-310. Epub 2006 Sep 25.

48.

A proteomic study of SUMO-2 target proteins.

Vertegaal AC, Ogg SC, Jaffray E, Rodriguez MS, Hay RT, Andersen JS, Mann M, Lamond AI.

J Biol Chem. 2004 Aug 6;279(32):33791-8. Epub 2004 Jun 2.

49.

The N and C termini of the splice variants of the human mitogen-activated protein kinase-interacting kinase Mnk2 determine activity and localization.

Scheper GC, Parra JL, Wilson M, Van Kollenburg B, Vertegaal AC, Han ZG, Proud CG.

Mol Cell Biol. 2003 Aug;23(16):5692-705.

50.

Differential expression of tapasin and immunoproteasome subunits in adenovirus type 5- versus type 12-transformed cells.

Vertegaal AC, Kuiperij HB, Houweling A, Verlaan M, van der Eb AJ, Zantema A.

J Biol Chem. 2003 Jan 3;278(1):139-46. Epub 2002 Oct 28.

Supplemental Content

Loading ...
Support Center