Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 62

1.

Proteome-wide detection of S-nitrosylation targets and motifs using bioorthogonal cleavable-linker-based enrichment and switch technique.

Mnatsakanyan R, Markoutsa S, Walbrunn K, Roos A, Verhelst SHL, Zahedi RP.

Nat Commun. 2019 May 16;10(1):2195. doi: 10.1038/s41467-019-10182-4.

2.

Short Peptides with Uncleavable Peptide Bond Mimetics as Photoactivatable Caspase-3 Inhibitors.

Van Kersavond T, Konopatzki R, Chakrabarty S, Blank-Landeshammer B, Sickmann A, Verhelst SHL.

Molecules. 2019 Jan 8;24(1). pii: E206. doi: 10.3390/molecules24010206.

3.

Stable and Functional Rhomboid Proteases in Lipid Nanodiscs by Using Diisobutylene/Maleic Acid Copolymers.

Barniol-Xicota M, Verhelst SHL.

J Am Chem Soc. 2018 Nov 7;140(44):14557-14561. doi: 10.1021/jacs.8b08441. Epub 2018 Oct 26.

PMID:
30347979
4.

Recent Advances in Activity-Based Protein Profiling of Proteases.

Chakrabarty S, Kahler JP, van de Plassche MAT, Vanhoutte R, Verhelst SHL.

Curr Top Microbiol Immunol. 2019;420:253-281. doi: 10.1007/82_2018_138.

PMID:
30244324
5.

An internally quenched peptide as a new model substrate for rhomboid intramembrane proteases.

Arutyunova E, Jiang Z, Yang J, Kulepa AN, Young HS, Verhelst S, O'Donoghue AJ, Lemieux MJ.

Biol Chem. 2018 Nov 27;399(12):1389-1397. doi: 10.1515/hsz-2018-0255.

PMID:
30044760
6.

Protease Specificity Profiling in a Pipet Tip Using "Charge-Synchronized" Proteome-Derived Peptide Libraries.

Nguyen MTN, Shema G, Zahedi RP, Verhelst SHL.

J Proteome Res. 2018 May 4;17(5):1923-1933. doi: 10.1021/acs.jproteome.8b00004. Epub 2018 Apr 20.

PMID:
29664642
7.

Benzoxazin-4-ones as novel, easily accessible inhibitors for rhomboid proteases.

Yang J, Barniol-Xicota M, Nguyen MTN, Ticha A, Strisovsky K, Verhelst SHL.

Bioorg Med Chem Lett. 2018 May 1;28(8):1423-1427. doi: 10.1016/j.bmcl.2017.12.056. Epub 2017 Dec 26.

PMID:
29506958
8.

Clickable Polyamine Derivatives as Chemical Probes for the Polyamine Transport System.

Vanhoutte R, Kahler JP, Martin S, van Veen S, Verhelst SHL.

Chembiochem. 2018 May 4;19(9):907-911. doi: 10.1002/cbic.201800043. Epub 2018 Apr 14.

PMID:
29451723
9.

Simple, scalable, and ultrasensitive tip-based identification of protease substrates.

Shema G, Nguyen MTN, Solari FA, Loroch S, Venne AS, Kollipara L, Sickmann A, Verhelst SHL, Zahedi RP.

Mol Cell Proteomics. 2018 Apr;17(4):826-834. doi: 10.1074/mcp.TIR117.000302. Epub 2018 Jan 22.

10.

Discovery and Biological Evaluation of Potent and Selective N-Methylene Saccharin-Derived Inhibitors for Rhomboid Intramembrane Proteases.

Goel P, Jumpertz T, Mikles DC, Tichá A, Nguyen MTN, Verhelst S, Hubalek M, Johnson DC, Bachovchin DA, Ogorek I, Pietrzik CU, Strisovsky K, Schmidt B, Weggen S.

Biochemistry. 2017 Dec 26;56(51):6713-6725. doi: 10.1021/acs.biochem.7b01066. Epub 2017 Dec 12.

11.

General and Modular Strategy for Designing Potent, Selective, and Pharmacologically Compliant Inhibitors of Rhomboid Proteases.

Tichá A, Stanchev S, Vinothkumar KR, Mikles DC, Pachl P, Began J, Škerle J, Švehlová K, Nguyen MTN, Verhelst SHL, Johnson DC, Bachovchin DA, Lepšík M, Majer P, Strisovsky K.

Cell Chem Biol. 2017 Dec 21;24(12):1523-1536.e4. doi: 10.1016/j.chembiol.2017.09.007. Epub 2017 Oct 26.

12.

Synthesis and Application of Activity-Based Probes for Proteases.

Van Kersavond T, Nguyen MTN, Verhelst SHL.

Methods Mol Biol. 2017;1574:255-266. doi: 10.1007/978-1-4939-6850-3_19.

PMID:
28315257
13.

The Chemical Route to a Carbon Dioxide Neutral World.

Martens JA, Bogaerts A, De Kimpe N, Jacobs PA, Marin GB, Rabaey K, Saeys M, Verhelst S.

ChemSusChem. 2017 Mar 22;10(6):1039-1055. doi: 10.1002/cssc.201601051. Epub 2017 Feb 24. Review.

PMID:
27925436
14.

Intramembrane proteases as drug targets.

Verhelst SHL.

FEBS J. 2017 May;284(10):1489-1502. doi: 10.1111/febs.13979. Epub 2017 Jan 6. Review.

15.

Cleavable Linkers in Chemical Proteomics Applications.

Yang Y, Fonović M, Verhelst SH.

Methods Mol Biol. 2017;1491:185-203. Review.

PMID:
27778290
16.
17.

Chemical Tools for the Study of Intramembrane Proteases.

Nguyen MT, Van Kersavond T, Verhelst SH.

ACS Chem Biol. 2015 Nov 20;10(11):2423-34. doi: 10.1021/acschembio.5b00693. Epub 2015 Nov 5. Review.

PMID:
26473325
18.

Inhibitor Fingerprinting of Rhomboid Proteases by Activity-Based Protein Profiling Reveals Inhibitor Selectivity and Rhomboid Autoprocessing.

Wolf EV, Zeissler A, Verhelst SH.

ACS Chem Biol. 2015 Oct 16;10(10):2325-33. doi: 10.1021/acschembio.5b00514. Epub 2015 Aug 7.

PMID:
26218717
19.

Inhibitors of rhomboid proteases.

Wolf EV, Verhelst SH.

Biochimie. 2016 Mar;122:38-47. doi: 10.1016/j.biochi.2015.07.007. Epub 2015 Jul 10. Review.

PMID:
26166068
20.

Activity-Based Protein Profiling of Rhomboid Proteases in Liposomes.

Wolf EV, Seybold M, Hadravová R, Strisovsky K, Verhelst SH.

Chembiochem. 2015 Jul 27;16(11):1616-21. doi: 10.1002/cbic.201500213. Epub 2015 Jun 19.

PMID:
26032951
21.

Detection of protease activity in cells and animals.

Verdoes M, Verhelst SH.

Biochim Biophys Acta. 2016 Jan;1864(1):130-42. doi: 10.1016/j.bbapap.2015.04.029. Epub 2015 May 7. Review.

PMID:
25960278
22.

Activity-based probes for detection of active MALT1 paracaspase in immune cells and lymphomas.

Eitelhuber AC, Vosyka O, Nagel D, Bognar M, Lenze D, Lammens K, Schlauderer F, Hlahla D, Hopfner KP, Lenz G, Hummel M, Verhelst SH, Krappmann D.

Chem Biol. 2015 Jan 22;22(1):129-38. doi: 10.1016/j.chembiol.2014.10.021. Epub 2014 Dec 31.

23.

Mixed alkyl aryl phosphonate esters as quenched fluorescent activity-based probes for serine proteases.

Serim S, Baer P, Verhelst SH.

Org Biomol Chem. 2015 Feb 28;13(8):2293-9. doi: 10.1039/c4ob02444c.

PMID:
25553959
24.

Bioorthogonal cleavage and exchange of major histocompatibility complex ligands by employing azobenzene-containing peptides.

Choo JA, Thong SY, Yap J, van Esch WJ, Raida M, Meijers R, Lescar J, Verhelst SH, Grotenbreg GM.

Angew Chem Int Ed Engl. 2014 Dec 1;53(49):13390-4. doi: 10.1002/anie.201406295. Epub 2014 Oct 27.

PMID:
25348595
25.

Phosphoramidates as novel activity-based probes for serine proteases.

Haedke UR, Frommel SC, Hansen F, Hahne H, Kuster B, Bogyo M, Verhelst SH.

Chembiochem. 2014 May 26;15(8):1106-10. doi: 10.1002/cbic.201400013. Epub 2014 May 9.

PMID:
24817682
26.

Comparative analysis of click chemistry mediated activity-based protein profiling in cell lysates.

Yang Y, Yang X, Verhelst SH.

Molecules. 2013 Oct 11;18(10):12599-608. doi: 10.3390/molecules181012599.

27.

A new class of rhomboid protease inhibitors discovered by activity-based fluorescence polarization.

Wolf EV, Zeißler A, Vosyka O, Zeiler E, Sieber S, Verhelst SH.

PLoS One. 2013 Aug 22;8(8):e72307. doi: 10.1371/journal.pone.0072307. eCollection 2013.

28.

Structural analysis of phenothiazine derivatives as allosteric inhibitors of the MALT1 paracaspase.

Schlauderer F, Lammens K, Nagel D, Vincendeau M, Eitelhuber AC, Verhelst SH, Kling D, Chrusciel A, Ruland J, Krappmann D, Hopfner KP.

Angew Chem Int Ed Engl. 2013 Sep 23;52(39):10384-7. doi: 10.1002/anie.201304290. Epub 2013 Aug 14. No abstract available.

PMID:
23946259
29.

Tuning activity-based probe selectivity for serine proteases by on-resin 'click' construction of peptide diphenyl phosphonates.

Serim S, Mayer SV, Verhelst SH.

Org Biomol Chem. 2013 Sep 14;11(34):5714-21. doi: 10.1039/c3ob40907d.

PMID:
23884325
30.

Cleavable trifunctional biotin reagents for protein labelling, capture and release.

Yang Y, Verhelst SH.

Chem Commun (Camb). 2013 Jun 14;49(47):5366-8. doi: 10.1039/c3cc42076k.

PMID:
23648945
31.

Probing functional tyrosines.

Verhelst SH.

Chem Biol. 2013 Apr 18;20(4):457-8. doi: 10.1016/j.chembiol.2013.04.002.

32.

A substrate-inspired probe monitors translocation, activation, and subcellular targeting of bacterial type III effector protease AvrPphB.

Lu H, Wang Z, Shabab M, Oeljeklaus J, Verhelst SH, Kaschani F, Kaiser M, Bogyo M, van der Hoorn RA.

Chem Biol. 2013 Feb 21;20(2):168-76. doi: 10.1016/j.chembiol.2012.11.007.

33.

Activity-based probes for rhomboid proteases discovered in a mass spectrometry-based assay.

Vosyka O, Vinothkumar KR, Wolf EV, Brouwer AJ, Liskamp RM, Verhelst SH.

Proc Natl Acad Sci U S A. 2013 Feb 12;110(7):2472-7. doi: 10.1073/pnas.1215076110. Epub 2013 Jan 28.

34.

Target profiling of 4-hydroxyderricin in S. aureus reveals seryl-tRNA synthetase binding and inhibition by covalent modification.

Battenberg OA, Yang Y, Verhelst SH, Sieber SA.

Mol Biosyst. 2013 Mar;9(3):343-51. doi: 10.1039/c2mb25446h. Epub 2013 Jan 8.

PMID:
23295910
35.

Tuning probe selectivity for chemical proteomics applications.

Haedke U, Küttler EV, Vosyka O, Yang Y, Verhelst SH.

Curr Opin Chem Biol. 2013 Feb;17(1):102-9. doi: 10.1016/j.cbpa.2012.11.024. Epub 2012 Dec 28. Review.

PMID:
23273613
36.

A simple and effective cleavable linker for chemical proteomics applications.

Yang Y, Hahne H, Kuster B, Verhelst SH.

Mol Cell Proteomics. 2013 Jan;12(1):237-44. doi: 10.1074/mcp.M112.021014. Epub 2012 Oct 1.

37.

Activity-based probes for the study of proteases: recent advances and developments.

Serim S, Haedke U, Verhelst SH.

ChemMedChem. 2012 Jul;7(7):1146-59. doi: 10.1002/cmdc.201200057. Epub 2012 Mar 19. Review.

PMID:
22431376
38.

Alkyne derivatives of isocoumarins as clickable activity-based probes for serine proteases.

Haedke U, Götz M, Baer P, Verhelst SH.

Bioorg Med Chem. 2012 Jan 15;20(2):633-40. doi: 10.1016/j.bmc.2011.03.014. Epub 2011 Mar 12.

PMID:
21454080
39.

The structural basis for catalysis and substrate specificity of a rhomboid protease.

Vinothkumar KR, Strisovsky K, Andreeva A, Christova Y, Verhelst S, Freeman M.

EMBO J. 2010 Nov 17;29(22):3797-809. doi: 10.1038/emboj.2010.243. Epub 2010 Oct 1.

40.

4-Bromophenacyl bromide specifically inhibits rhoptry secretion during Toxoplasma invasion.

Ravindran S, Lodoen MB, Verhelst SH, Bogyo M, Boothroyd JC.

PLoS One. 2009 Dec 2;4(12):e8143. doi: 10.1371/journal.pone.0008143.

41.

A major cathepsin B protease from the liver fluke Fasciola hepatica has atypical active site features and a potential role in the digestive tract of newly excysted juvenile parasites.

Beckham SA, Piedrafita D, Phillips CI, Samarawickrema N, Law RH, Smooker PM, Quinsey NS, Irving JA, Greenwood D, Verhelst SH, Bogyo M, Turk B, Coetzer TH, Wijeyewickrema LC, Spithill TW, Pike RN.

Int J Biochem Cell Biol. 2009 Jul;41(7):1601-12. doi: 10.1016/j.biocel.2009.02.003. Epub 2009 Feb 20.

42.

Minitags for small molecules: detecting targets of reactive small molecules in living plant tissues using 'click chemistry'.

Kaschani F, Verhelst SH, van Swieten PF, Verdoes M, Wong CS, Wang Z, Kaiser M, Overkleeft HS, Bogyo M, van der Hoorn RA.

Plant J. 2009 Jan;57(2):373-85. doi: 10.1111/j.1365-313X.2008.03683.x. Epub 2008 Oct 25.

43.

Evaluation of alpha,beta-unsaturated ketone-based probes for papain-family cysteine proteases.

Yang Z, Fonović M, Verhelst SH, Blum G, Bogyo M.

Bioorg Med Chem. 2009 Feb 1;17(3):1071-8. doi: 10.1016/j.bmc.2008.02.089. Epub 2008 Mar 2.

44.

Design of protease-resistant myelin basic protein-derived peptides by cleavage site directed amino acid substitutions.

Burster T, Marin-Esteban V, Boehm BO, Dunn S, Rotzschke O, Falk K, Weber E, Verhelst SH, Kalbacher H, Driessen C.

Biochem Pharmacol. 2007 Nov 15;74(10):1514-23. Epub 2007 Aug 2.

PMID:
17803968
45.

Proteomics evaluation of chemically cleavable activity-based probes.

Fonović M, Verhelst SH, Sorum MT, Bogyo M.

Mol Cell Proteomics. 2007 Oct;6(10):1761-70. Epub 2007 Jul 5.

46.

Design, synthesis, and evaluation of in vivo potency and selectivity of epoxysuccinyl-based inhibitors of papain-family cysteine proteases.

Sadaghiani AM, Verhelst SH, Gocheva V, Hill K, Majerova E, Stinson S, Joyce JA, Bogyo M.

Chem Biol. 2007 May;14(5):499-511.

47.

Development of calpain-specific inactivators by screening of positional scanning epoxide libraries.

Cuerrier D, Moldoveanu T, Campbell RL, Kelly J, Yoruk B, Verhelst SH, Greenbaum D, Bogyo M, Davies PL.

J Biol Chem. 2007 Mar 30;282(13):9600-11. Epub 2007 Jan 11.

48.

A mild chemically cleavable linker system for functional proteomic applications.

Verhelst SH, Fonović M, Bogyo M.

Angew Chem Int Ed Engl. 2007;46(8):1284-6. No abstract available.

PMID:
17205587
49.

Tagging and detection strategies for activity-based proteomics.

Sadaghiani AM, Verhelst SH, Bogyo M.

Curr Opin Chem Biol. 2007 Feb;11(1):20-8. Epub 2006 Dec 13. Review.

PMID:
17174138
50.

Specificity of aza-peptide electrophile activity-based probes of caspases.

Sexton KB, Kato D, Berger AB, Fonovic M, Verhelst SH, Bogyo M.

Cell Death Differ. 2007 Apr;14(4):727-32. Epub 2006 Dec 15.

Supplemental Content

Loading ...
Support Center