Format

Send to

Choose Destination
Exp Gerontol. 2019 Feb 7;119:146-156. doi: 10.1016/j.exger.2019.02.006. [Epub ahead of print]

Sex-specific stress tolerance, proteolysis, and lifespan in the invertebrate Tigriopus californicus.

Author information

1
Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA.
2
Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA; Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089, USA.
3
Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089, USA; Molecular & Computational Biology Division, Department of Biological Sciences, College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90089, USA.
4
Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA. Electronic address: sedmands@usc.edu.

Abstract

Because stress tolerance and longevity are mechanistically and phenotypically linked, the sex with higher acute stress tolerance might be expected to also live longer. On the other hand, the association between stress tolerance and lifespan may be complicated by tradeoffs between acute tolerance and long-term survival. Here we use the copepod Tigriopus californicus to test for sex differences in stress resistance, proteolytic activity and longevity. Unlike many model organisms, this species does not have sex chromosomes. However, substantial sex differences were still observed. Females were found to have superior tolerance to a range of acute stressors (high temperature, high salinity, low salinity, copper and bisphenol A (BPA)) across a variety of treatments including different populations, pure vs. hybrid crosses, and different shading environments. Upregulation of proteolytic capacity - one molecular mechanism for responding to acute stress - was also found to be sexually dimorphic. In the combined stress treatment of chronic copper exposure followed by acute heat exposure, proteolytic capacity was suppressed for males. Females, however, maintained a robust proteolytic stress response. While females consistently showed greater tolerance to short-term stress, lifespan was largely equivalent between the two sexes under both benign conditions and mild thermal stress. Our findings indicate that short-term stress tolerance does not predict long-term survival under relatively mild conditions.

KEYWORDS:

Aging; Environmental stress; Longevity; Marine; Pollution; Proteolytic activity

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center