Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 38

1.

Methane, a gas produced by enteric bacteria, slows intestinal transit and augments small intestinal contractile activity.

Pimentel M, Lin HC, Enayati P, van den Burg B, Lee HR, Chen JH, Park S, Kong Y, Conklin J.

Am J Physiol Gastrointest Liver Physiol. 2006 Jun;290(6):G1089-95. Epub 2005 Nov 17.

2.

Directed evolution of enzyme stability.

Eijsink VG, Gåseidnes S, Borchert TV, van den Burg B.

Biomol Eng. 2005 Jun;22(1-3):21-30. Review.

PMID:
15857780
3.

Rational engineering of enzyme stability.

Eijsink VG, Bjørk A, Gåseidnes S, Sirevåg R, Synstad B, van den Burg B, Vriend G.

J Biotechnol. 2004 Sep 30;113(1-3):105-20. Review.

PMID:
15380651
4.

Extremophiles as a source for novel enzymes.

van den Burg B.

Curr Opin Microbiol. 2003 Jun;6(3):213-8. Review.

PMID:
12831896
5.

Selection of mutations for increased protein stability.

van den Burg B, Eijsink VG.

Curr Opin Biotechnol. 2002 Aug;13(4):333-7. Review.

PMID:
12323355
6.

The effects of modifying the surface charge on the catalytic activity of a thermolysin-like protease.

de Kreij A, van den Burg B, Venema G, Vriend G, Eijsink VG, Nielsen JE.

J Biol Chem. 2002 May 3;277(18):15432-8. Epub 2002 Feb 21.

7.

The effect of changing the hydrophobic S1' subsite of thermolysin-like proteases on substrate specificity.

de Kreij A, van den Burg B, Veltman OR, Vriend G, Venema G, Eijsink VG.

Eur J Biochem. 2001 Sep;268(18):4985-91.

8.
9.

Characteristics of the biologically active 35-kDa metalloprotease virulence factor from Listeria monocytogenes.

Coffey A, van den Burg B, Veltman R, Abee T.

J Appl Microbiol. 2000 Jan;88(1):132-41.

10.

Two allelic forms of the aureolysin gene (aur) within Staphylococcus aureus.

Sabat A, Kosowska K, Poulsen K, Kasprowicz A, Sekowska A, van Den Burg B, Travis J, Potempa J.

Infect Immun. 2000 Feb;68(2):973-6.

11.

Characterization of a novel stable biocatalyst obtained by protein engineering.

Van den Burg B, de Kreij A, Van der Veek P, Mansfeld J, Venema G.

Biotechnol Appl Biochem. 1999 Aug;30(1):35-40.

PMID:
10467116
12.

Probing the unfolding region in a thermolysin-like protease by site-specific immobilization.

Mansfeld J, Vriend G, Van den Burg B, Eijsink VG, Ulbrich-Hofmann R.

Biochemistry. 1999 Jun 29;38(26):8240-5.

PMID:
10387069
13.

Early steps in the unfolding of thermolysin-like proteases.

Vriend G, Berendsen HJ, van den Burg B, Venema G, Eijsink VG.

J Biol Chem. 1998 Dec 25;273(52):35074-7.

14.

A single calcium binding site is crucial for the calcium-dependent thermal stability of thermolysin-like proteases.

Veltman OR, Vriend G, Berendsen HJ, Van den Burg B, Venema G, Eijsink VG.

Biochemistry. 1998 Apr 14;37(15):5312-9.

PMID:
9548763
15.

Probing catalytic hinge bending motions in thermolysin-like proteases by glycine --> alanine mutations.

Veltman OR, Eijsink VG, Vriend G, de Kreij A, Venema G, Van den Burg B.

Biochemistry. 1998 Apr 14;37(15):5305-11.

PMID:
9548762
16.

Rendering one autolysis site in Bacillus subtilis neutral protease resistant to cleavage reveals a new fission.

Van den Burg B, Eijsink VG, Vriend G, Veltman OR, Venema G.

Biotechnol Appl Biochem. 1998 Apr;27(2):125-32.

PMID:
9569607
17.

Engineering an enzyme to resist boiling.

Van den Burg B, Vriend G, Veltman OR, Venema G, Eijsink VG.

Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2056-60.

18.

Mutational analysis of a surface area that is critical for the thermal stability of thermolysin-like proteases.

Veltman OR, Vriend G, Hardy F, Mansfeld J, van den Burg B, Venema G, Eijsink VG.

Eur J Biochem. 1997 Sep 1;248(2):433-40.

19.

Design of thermolabile bacteriophage repressor mutants by comparative molecular modeling.

Nauta A, van den Burg B, Karsens H, Venema G, Kok J.

Nat Biotechnol. 1997 Oct;15(10):980-3.

PMID:
9335049
20.

Extreme stabilization of a thermolysin-like protease by an engineered disulfide bond.

Mansfeld J, Vriend G, Dijkstra BW, Veltman OR, Van den Burg B, Venema G, Ulbrich-Hofmann R, Eijsink VG.

J Biol Chem. 1997 Apr 25;272(17):11152-6.

21.

Engineering thermolysin-like proteases whose stability is largely independent of calcium.

Veltman OR, Vriend G, van den Burg B, Hardy F, Venema G, Eijsink VG.

FEBS Lett. 1997 Mar 24;405(2):241-4.

22.

Analysis of structural determinants of the stability of thermolysin-like proteases by molecular modelling and site-directed mutagenesis.

Veltman OR, Vriend G, Middelhoven PJ, van den Burg B, Venema G, Eijsink VG.

Protein Eng. 1996 Dec;9(12):1181-9.

PMID:
9010931
23.

Protein stabilization by hydrophobic interactions at the surface.

Van den Burg B, Dijkstra BW, Vriend G, Van der Vinne B, Venema G, Eijsink VG.

Eur J Biochem. 1994 Mar 15;220(3):981-5.

24.

Introduction of disulfide bonds into Bacillus subtilis neutral protease.

van den Burg B, Dijkstra BW, van der Vinne B, Stulp BK, Eijsink VG, Venema G.

Protein Eng. 1993 Jul;6(5):521-7.

PMID:
8415578
25.

Effects of changing the interaction between subdomains on the thermostability of Bacillus neutral proteases.

Eijsink VG, Vriend G, van der Vinne B, Hazes B, van den Burg B, Venema G.

Proteins. 1992 Oct;14(2):224-36.

PMID:
1409570
26.

Increasing the thermostability of the neutral proteinase of Bacillus stearothermophilus by improvement of internal hydrogen-bonding.

Eijsink VG, Vriend G, Van der Zee JR, Van den Burg B, Venema G.

Biochem J. 1992 Jul 15;285 ( Pt 2):625-8.

27.

The effect of cavity-filling mutations on the thermostability of Bacillus stearothermophilus neutral protease.

Eijsink VG, Dijkstra BW, Vriend G, van der Zee JR, Veltman OR, van der Vinne B, van den Burg B, Kempe S, Venema G.

Protein Eng. 1992 Jul;5(5):421-6.

PMID:
1518790
28.

Increasing the thermostability of a neutral protease by replacing positively charged amino acids in the N-terminal turn of alpha-helices.

Eijsink VG, Vriend G, van den Burg B, van der Zee JR, Venema G.

Protein Eng. 1992 Mar;5(2):165-70.

PMID:
1594571
29.

Introduction of a stabilizing 10 residue beta-hairpin in Bacillus subtilis neutral protease.

Eijsink VG, Vriend G, van den Burg B, van der Zee JR, Veltman OR, Stulp BK, Venema G.

Protein Eng. 1992 Mar;5(2):157-63.

PMID:
1594570
30.

Stabilization of the neutral protease of Bacillus stearothermophilus by removal of a buried water molecule.

Vriend G, Berendsen HJ, van der Zee JR, van den Burg B, Venema G, Eijsink VG.

Protein Eng. 1991 Dec;4(8):941-5.

PMID:
1817257
31.

High performance affinity chromatography of Bacillus neutral proteases.

Eijsink VG, van den Burg B, Venema G.

Biotechnol Appl Biochem. 1991 Dec;14(3):275-83.

PMID:
1777113
32.
33.

Thermostability of Bacillus subtilis neutral protease.

Eijsink VG, van den Burg B, Vriend G, Berendsen HJ, Venema G.

Biochem Int. 1991 Jun;24(3):517-25.

PMID:
1772430
34.

Improving the thermostability of the neutral protease of Bacillus stearothermophilus by replacing a buried asparagine by leucine.

Eijsink VG, van der Zee JR, van den Burg B, Vriend G, Venema G.

FEBS Lett. 1991 Apr 22;282(1):13-6.

35.

Identification of autodigestion target sites in Bacillus subtilis neutral proteinase.

van den Burg B, Eijsink VG, Stulp BK, Venema G.

Biochem J. 1990 Nov 15;272(1):93-7.

36.

Contribution of the C-terminal amino acid to the stability of Bacillus subtilis neutral protease.

Eijsink VG, Vriend G, Van Den Burg B, Venema G, Stulp BK.

Protein Eng. 1990 Oct;4(1):99-104.

PMID:
2127107
37.

One-step affinity purification of Bacillus neutral proteases using bacitracin-silica.

Van Den Burg B, Eijsink VG, Stulp BK, Venema G.

J Biochem Biophys Methods. 1989 May;18(3):209-19.

PMID:
2499614
38.

Spectral and potentiometric analysis of cytochromes from Bacillus subtilis.

de Vrij W, van den Burg B, Konings WN.

Eur J Biochem. 1987 Aug 3;166(3):589-95.

Supplemental Content

Loading ...
Support Center