Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 47

1.

Thermodynamic Study of Ion-Driven Aggregation of Cellulose Nanocrystals.

Lombardo S, Gençer A, Schütz C, Van Rie J, Eyley S, Thielemans W.

Biomacromolecules. 2019 Aug 12;20(8):3181-3190. doi: 10.1021/acs.biomac.9b00755. Epub 2019 Jul 24.

PMID:
31339703
2.

A conserved sequence from heat-adapted species improves Rubisco activase thermostability in wheat.

Scafaro AP, Bautsoens N, den Boer B, Van Rie J, Galle A.

Plant Physiol. 2019 Jun 12. pii: pp.00425.2019. doi: 10.1104/pp.19.00425. [Epub ahead of print]

3.

Genotypic, Developmental and Environmental Effects on the Rapidity of gs in Wheat: Impacts on Carbon Gain and Water-Use Efficiency.

Faralli M, Cockram J, Ober E, Wall S, Galle A, Van Rie J, Raines C, Lawson T.

Front Plant Sci. 2019 Apr 17;10:492. doi: 10.3389/fpls.2019.00492. eCollection 2019.

4.

Anisotropic Diffusion and Phase Behavior of Cellulose Nanocrystal Suspensions.

Van Rie J, Schütz C, Gençer A, Lombardo S, Gasser U, Kumar S, Salazar-Alvarez G, Kang K, Thielemans W.

Langmuir. 2019 Feb 12;35(6):2289-2302. doi: 10.1021/acs.langmuir.8b03792. Epub 2019 Jan 23.

PMID:
30672300
5.

Effect of Gelation on the Colloidal Deposition of Cellulose Nanocrystal Films.

Gençer A, Van Rie J, Lombardo S, Kang K, Thielemans W.

Biomacromolecules. 2018 Aug 13;19(8):3233-3243. doi: 10.1021/acs.biomac.8b00493. Epub 2018 Jun 28.

PMID:
29953209
6.

Critical amino acids for the insecticidal activity of Vip3Af from Bacillus thuringiensis: Inference on structural aspects.

Banyuls N, Hernández-Rodríguez CS, Van Rie J, Ferré J.

Sci Rep. 2018 May 15;8(1):7539. doi: 10.1038/s41598-018-25346-3.

7.

Comparative analysis of the susceptibility/tolerance of Spodoptera littoralis to Vip3Aa, Vip3Ae, Vip3Ad and Vip3Af toxins of Bacillus thuringiensis.

Boukedi H, Ben Khedher S, Abdelkefi-Mesrati L, Van Rie J, Tounsi S.

J Invertebr Pathol. 2018 Feb;152:30-34. doi: 10.1016/j.jip.2018.01.006. Epub 2018 Jan 31.

PMID:
29378203
8.

Cellulose-gold nanoparticle hybrid materials.

Van Rie J, Thielemans W.

Nanoscale. 2017 Jun 29;9(25):8525-8554. doi: 10.1039/c7nr00400a. Review.

PMID:
28613299
9.

Heat tolerance in a wild Oryza species is attributed to maintenance of Rubisco activation by a thermally stable Rubisco activase ortholog.

Scafaro AP, Gallé A, Van Rie J, Carmo-Silva E, Salvucci ME, Atwell BJ.

New Phytol. 2016 Aug;211(3):899-911. doi: 10.1111/nph.13963. Epub 2016 May 5.

10.

Effect of carbohydrates and night temperature on night respiration in rice.

Peraudeau S, Lafarge T, Roques S, Quiñones CO, Clement-Vidal A, Ouwerkerk PB, Van Rie J, Fabre D, Jagadish KS, Dingkuhn M.

J Exp Bot. 2015 Jul;66(13):3931-44. doi: 10.1093/jxb/erv193. Epub 2015 May 7.

PMID:
25954047
11.

Cryogel-PCL combination scaffolds for bone tissue repair.

Van Rie J, Declercq H, Van Hoorick J, Dierick M, Van Hoorebeke L, Cornelissen R, Thienpont H, Dubruel P, Van Vlierberghe S.

J Mater Sci Mater Med. 2015 Mar;26(3):123. doi: 10.1007/s10856-015-5465-8. Epub 2015 Feb 18.

PMID:
25690621
12.

Different binding sites for Bacillus thuringiensis Cry1Ba and Cry9Ca proteins in the European corn borer, Ostrinia nubilalis (Hübner).

Hernández-Martínez P, Hernández-Rodríguez CS, Van Rie J, Escriche B, Ferré J.

J Invertebr Pathol. 2014 Jul;120:1-3. doi: 10.1016/j.jip.2014.04.008. Epub 2014 May 2.

PMID:
24799046
13.

Shared midgut binding sites for Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa proteins from Bacillus thuringiensis in two important corn pests, Ostrinia nubilalis and Spodoptera frugiperda.

Hernández-Rodríguez CS, Hernández-Martínez P, Van Rie J, Escriche B, Ferré J.

PLoS One. 2013 Jul 5;8(7):e68164. doi: 10.1371/journal.pone.0068164. Print 2013.

14.

Vip3C, a novel class of vegetative insecticidal proteins from Bacillus thuringiensis.

Palma L, Hernández-Rodríguez CS, Maeztu M, Hernández-Martínez P, Ruiz de Escudero I, Escriche B, Muñoz D, Van Rie J, Ferré J, Caballero P.

Appl Environ Microbiol. 2012 Oct;78(19):7163-5. doi: 10.1128/AEM.01360-12. Epub 2012 Aug 3.

15.

Specific binding of radiolabeled Cry1Fa insecticidal protein from Bacillus thuringiensis to midgut sites in lepidopteran species.

Hernández-Rodríguez CS, Hernández-Martínez P, Van Rie J, Escriche B, Ferré J.

Appl Environ Microbiol. 2012 Jun;78(11):4048-50. doi: 10.1128/AEM.07591-11. Epub 2012 Mar 23.

16.

Binding sites for Bacillus thuringiensis Cry2Ae toxin on heliothine brush border membrane vesicles are not shared with Cry1A, Cry1F, or Vip3A toxin.

Gouffon C, Van Vliet A, Van Rie J, Jansens S, Jurat-Fuentes JL.

Appl Environ Microbiol. 2011 May;77(10):3182-8. doi: 10.1128/AEM.02791-10. Epub 2011 Mar 25.

17.

Effects of mutations within surface-exposed loops in the pore-forming domain of the Cry9Ca insecticidal toxin of Bacillus thuringiensis.

Brunet JF, Vachon V, Marsolais M, Arnaut G, Van Rie J, Marceau L, Larouche G, Vincent C, Schwartz JL, Laprade R.

J Membr Biol. 2010 Dec;238(1-3):21-31. doi: 10.1007/s00232-010-9315-9. Epub 2010 Nov 17.

PMID:
21082167
18.

Midgut juice components affect pore formation by the Bacillus thuringiensis insecticidal toxin Cry9Ca.

Brunet JF, Vachon V, Marsolais M, Van Rie J, Schwartz JL, Laprade R.

J Invertebr Pathol. 2010 Jul;104(3):203-8. doi: 10.1016/j.jip.2010.04.007. Epub 2010 Apr 24.

PMID:
20399787
19.

Binding site alteration is responsible for field-isolated resistance to Bacillus thuringiensis Cry2A insecticidal proteins in two Helicoverpa species.

Caccia S, Hernández-Rodríguez CS, Mahon RJ, Downes S, James W, Bautsoens N, Van Rie J, Ferré J.

PLoS One. 2010 Apr 1;5(4):e9975. doi: 10.1371/journal.pone.0009975.

20.

Pore-forming properties of the Bacillus thuringiensis toxin Cry9Ca in Manduca sexta brush border membrane vesicles.

Brunet JF, Vachon V, Juteau M, Van Rie J, Larouche G, Vincent C, Schwartz JL, Laprade R.

Biochim Biophys Acta. 2010 Jun;1798(6):1111-8. doi: 10.1016/j.bbamem.2010.02.006. Epub 2010 Feb 11.

21.

Screening and identification of vip genes in Bacillus thuringiensis strains.

Hernández-Rodríguez CS, Boets A, Van Rie J, Ferré J.

J Appl Microbiol. 2009 Jul;107(1):219-25. doi: 10.1111/j.1365-2672.2009.04199.x. Epub 2009 Mar 3.

22.

Specific binding of Bacillus thuringiensis Cry2A insecticidal proteins to a common site in the midgut of Helicoverpa species.

Hernández-Rodríguez CS, Van Vliet A, Bautsoens N, Van Rie J, Ferré J.

Appl Environ Microbiol. 2008 Dec;74(24):7654-9. doi: 10.1128/AEM.01373-08. Epub 2008 Oct 17.

23.

Use of a Cry1Ac-resistant line of Helicoverpa armigera (Lepidoptera: Noctuidae) to detect novel insecticidal toxin genes in Bacillus thuringiensis.

Beard CE, Court L, Mourant RG, James B, Van Rie J, Masson L, Akhurst RJ.

Curr Microbiol. 2008 Sep;57(3):175-80. doi: 10.1007/s00284-008-9098-8. Epub 2008 Jul 1.

PMID:
18592310
24.

Unusually high frequency of genes encoding vegetative insecticidal proteins in an Australian Bacillus thuringiensis collection.

Beard CE, Court L, Boets A, Mourant R, Van Rie J, Akhurst RJ.

Curr Microbiol. 2008 Sep;57(3):195-9. doi: 10.1007/s00284-008-9173-1. Epub 2008 Jul 1.

PMID:
18592309
25.
26.

Novel Vip3-related protein from Bacillus thuringiensis.

Rang C, Gil P, Neisner N, Van Rie J, Frutos R.

Appl Environ Microbiol. 2005 Oct;71(10):6276-81.

27.

Detection and traceability of genetically modified organisms in the food production chain.

Miraglia M, Berdal KG, Brera C, Corbisier P, Holst-Jensen A, Kok EJ, Marvin HJ, Schimmel H, Rentsch J, van Rie JP, Zagon J.

Food Chem Toxicol. 2004 Jul;42(7):1157-80. Review.

PMID:
15123385
28.

Characterization of cry1, cry2, and cry9 genes in Bacillus thuringiensis isolates from China.

Wang J, Boets A, Van Rie J, Ren G.

J Invertebr Pathol. 2003 Jan;82(1):63-71.

PMID:
12581721
29.

Traceability of genetically modified organisms.

Aarts HJ, van Rie JP, Kok EJ.

Expert Rev Mol Diagn. 2002 Jan;2(1):69-76. Review.

PMID:
11963810
30.

Biochemistry and genetics of insect resistance to Bacillus thuringiensis.

Ferré J, Van Rie J.

Annu Rev Entomol. 2002;47:501-33. Review.

PMID:
11729083
31.

Effect of Bacillus thuringiensis Cry1 toxins in insect hemolymph and their neurotoxicity in brain cells of Lymantria dispar.

Cerstiaens A, Verleyen P, Van Rie J, Van Kerkhove E, Schwartz JL, Laprade R, De Loof A, Schoofs L.

Appl Environ Microbiol. 2001 Sep;67(9):3923-7.

32.

Bacillus thuringiensis and its use in transgenic insect control technologies.

Van Rie J.

Int J Med Microbiol. 2000 Oct;290(4-5):463-9. Review.

PMID:
11111927
33.

Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins.

Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH.

Microbiol Mol Biol Rev. 1998 Sep;62(3):807-13. Review.

34.

Bacillus thuringiensis and its pesticidal crystal proteins.

Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH.

Microbiol Mol Biol Rev. 1998 Sep;62(3):775-806. Review.

35.

Cloning and characterization of Manduca sexta and Plutella xylostella midgut aminopeptidase N enzymes related to Bacillus thuringiensis toxin-binding proteins.

Denolf P, Hendrickx K, Van Damme J, Jansens S, Peferoen M, Degheele D, Van Rie J.

Eur J Biochem. 1997 Sep 15;248(3):748-61.

36.

Intramolecular proteolytic cleavage of Bacillus thuringiensis Cry3A delta-endotoxin may facilitate its coleopteran toxicity.

Carroll J, Convents D, Van Damme J, Boets A, Van Rie J, Ellar DJ.

J Invertebr Pathol. 1997 Jul;70(1):41-9.

PMID:
9217464
37.

Toxicity of Bacillus thuringiensis Spore and Crystal Protein to Resistant Diamondback Moth (Plutella xylostella).

Tang JD, Shelton AM, Van Rie J, De Roeck S, Moar WJ, Roush RT, Peferoen M.

Appl Environ Microbiol. 1996 Feb;62(2):564-9.

38.

A Bacillus thuringiensis insecticidal crystal protein with a high activity against members of the family Noctuidae.

Lambert B, Buysse L, Decock C, Jansens S, Piens C, Saey B, Seurinck J, Van Audenhove K, Van Rie J, Van Vliet A, Peferoen M.

Appl Environ Microbiol. 1996 Jan;62(1):80-6.

40.

Biotinylation of Bacillus thuringiensis Insecticidal Crystal Proteins.

Denolf P, Jansens S, Van Houdt S, Peferoen M, Degheele D, Van Rie J.

Appl Environ Microbiol. 1993 Jun;59(6):1821-7.

41.

The C-terminal domain of the toxic fragment of a Bacillus thuringiensis crystal protein determines receptor binding.

Honée G, Convents D, Van Rie J, Jansens S, Peferoen M, Visser B.

Mol Microbiol. 1991 Nov;5(11):2799-806.

PMID:
1664021
42.
43.

Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta-endotoxins.

Van Rie J, Jansens S, Höfte H, Degheele D, Van Mellaert H.

Appl Environ Microbiol. 1990 May;56(5):1378-85.

44.

Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis.

Van Rie J, McGaughey WH, Johnson DE, Barnett BD, Van Mellaert H.

Science. 1990 Jan 5;247(4938):72-4.

PMID:
2294593
45.
46.

Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts.

Hofmann C, Vanderbruggen H, Höfte H, Van Rie J, Jansens S, Van Mellaert H.

Proc Natl Acad Sci U S A. 1988 Nov;85(21):7844-8.

47.

Monoclonal Antibody Analysis and Insecticidal Spectrum of Three Types of Lepidopteran-Specific Insecticidal Crystal Proteins of Bacillus thuringiensis.

Höfte H, Van Rie J, Jansens S, Van Houtven A, Vanderbruggen H, Vaeck M.

Appl Environ Microbiol. 1988 Aug;54(8):2010-7.

Supplemental Content

Loading ...
Support Center