Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 196

1.

A general protein O-glycosylation machinery conserved in Burkholderia species improves bacterial fitness and elicits glycan immunogenicity in humans.

Fathy Mohamed Y, Scott NE, Molinaro A, Creuzenet C, Ortega X, Lertmemongkolchai G, Tunney MM, Green H, Jones AM, DeShazer D, Currie BJ, Foster LJ, Ingram R, De Castro C, Valvano MA.

J Biol Chem. 2019 Sep 6;294(36):13248-13268. doi: 10.1074/jbc.RA119.009671. Epub 2019 Jul 26.

PMID:
31350337
2.

Identification of the lipopolysaccharide O-antigen biosynthesis priming enzyme and the O-antigen ligase in Myxococcus xanthus: critical role of LPS O-antigen in motility and development.

Pérez-Burgos M, García-Romero I, Jung J, Valvano MA, Søgaard-Andersen L.

Mol Microbiol. 2019 Jul 23. doi: 10.1111/mmi.14354. [Epub ahead of print]

PMID:
31332863
3.

Modulation of antibiotic sensitivity and biofilm formation in Pseudomonas aeruginosa by interspecies signal analogues.

An SQ, Murtagh J, Twomey KB, Gupta MK, O'Sullivan TP, Ingram R, Valvano MA, Tang JL.

Nat Commun. 2019 May 27;10(1):2334. doi: 10.1038/s41467-019-10271-4.

4.

Correction: The ArcAB two-component regulatory system promotes resistance to reactive oxygen species and systemic infection by Salmonella Typhimurium.

Pardo-Esté C, Hidalgo AA, Aguirre C, Inostroza A, Briones AC, Cabezas CE, Castro-Severyn J, Fuentes JA, Opazo CM, Riedel CA, Otero C, Pacheco R, Valvano MA, Saavedra CP.

PLoS One. 2019 Mar 26;14(3):e0214634. doi: 10.1371/journal.pone.0214634. eCollection 2019.

5.

Sulfhydryl Labeling as a Tool to Investigate the Topology of Membrane Proteins Involved in Lipopolysaccharide Biosynthesis.

Tavares-Carreón F, Ruan X, Ford A, Valvano MA.

Methods Mol Biol. 2019;1954:203-213. doi: 10.1007/978-1-4939-9154-9_16.

PMID:
30864134
6.

Vitamin E Increases Antimicrobial Sensitivity by Inhibiting Bacterial Lipocalin Antibiotic Binding.

Naguib MM, Valvano MA.

mSphere. 2018 Dec 12;3(6). pii: e00564-18. doi: 10.1128/mSphere.00564-18.

7.

CHARMM-GUI Membrane Builder for Complex Biological Membrane Simulations with Glycolipids and Lipoglycans.

Lee J, Patel DS, Ståhle J, Park SJ, Kern NR, Kim S, Lee J, Cheng X, Valvano MA, Holst O, Knirel YA, Qi Y, Jo S, Klauda JB, Widmalm G, Im W.

J Chem Theory Comput. 2019 Jan 8;15(1):775-786. doi: 10.1021/acs.jctc.8b01066. Epub 2018 Dec 28.

PMID:
30525595
8.

Complex Signaling Networks Controlling Dynamic Molecular Changes in Pseudomonas aeruginosa Biofilm.

Guła G, Dorotkiewicz-Jach A, Korzekwa K, Valvano MA, Drulis-Kawa Z.

Curr Med Chem. 2019;26(11):1979-1993. doi: 10.2174/0929867325666180912110151. Review.

PMID:
30207213
9.

The ArcAB two-component regulatory system promotes resistance to reactive oxygen species and systemic infection by Salmonella Typhimurium.

Pardo-Esté C, Hidalgo AA, Aguirre C, Briones AC, Cabezas CE, Castro-Severyn J, Fuentes JA, Opazo CM, Riedel CA, Otero C, Pacheco R, Valvano MA, Saavedra CP.

PLoS One. 2018 Sep 4;13(9):e0203497. doi: 10.1371/journal.pone.0203497. eCollection 2018. Erratum in: PLoS One. 2019 Mar 26;14(3):e0214634.

10.

Escherichia coli and Pseudomonas aeruginosa lipopolysaccharide O-antigen ligases share similar membrane topology and biochemical properties.

Ruan X, Monjarás Feria J, Hamad M, Valvano MA.

Mol Microbiol. 2018 Oct;110(1):95-113. doi: 10.1111/mmi.14085. Epub 2018 Oct 3.

PMID:
30047569
11.

Novel antibiotic combinations proposed for treatment of Burkholderia cepacia complex infections.

El-Halfawy OM, Naguib MM, Valvano MA.

Antimicrob Resist Infect Control. 2017 Nov 25;6:120. doi: 10.1186/s13756-017-0279-8. eCollection 2017.

12.

Structure of O-Antigen and Hybrid Biosynthetic Locus in Burkholderia cenocepacia Clonal Variants Recovered from a Cystic Fibrosis Patient.

Hassan AA, Maldonado RF, Dos Santos SC, Di Lorenzo F, Silipo A, Coutinho CP, Cooper VS, Molinaro A, Valvano MA, Sá-Correia I.

Front Microbiol. 2017 Jun 8;8:1027. doi: 10.3389/fmicb.2017.01027. eCollection 2017.

13.

Phage Life Cycles Behind Bacterial Biodiversity.

Olszak T, Latka A, Roszniowski B, Valvano MA, Drulis-Kawa Z.

Curr Med Chem. 2017 Nov 24;24(36):3987-4001. doi: 10.2174/0929867324666170413100136. Review.

PMID:
28412903
14.

Antibiotic Capture by Bacterial Lipocalins Uncovers an Extracellular Mechanism of Intrinsic Antibiotic Resistance.

El-Halfawy OM, Klett J, Ingram RJ, Loutet SA, Murphy ME, Martín-Santamaría S, Valvano MA.

MBio. 2017 Mar 14;8(2). pii: e00225-17. doi: 10.1128/mBio.00225-17.

15.

The LpxL acyltransferase is required for normal growth and penta-acylation of lipid A in Burkholderia cenocepacia.

Fathy Mohamed Y, Hamad M, Ortega XP, Valvano MA.

Mol Microbiol. 2017 Apr;104(1):144-162. doi: 10.1111/mmi.13618. Epub 2017 Jan 27.

16.

The Burkholderia cenocepacia peptidoglycan-associated lipoprotein is involved in epithelial cell attachment and elicitation of inflammation.

Dennehy R, Romano M, Ruggiero A, Mohamed YF, Dignam SL, Mujica Troncoso C, Callaghan M, Valvano MA, Berisio R, McClean S.

Cell Microbiol. 2017 May;19(5). doi: 10.1111/cmi.12691. Epub 2016 Nov 25.

PMID:
27886433
17.

The temperate Burkholderia phage AP3 of the Peduovirinae shows efficient antimicrobial activity against B. cenocepacia of the IIIA lineage.

Roszniowski B, Latka A, Maciejewska B, Vandenheuvel D, Olszak T, Briers Y, Holt GS, Valvano MA, Lavigne R, Smith DL, Drulis-Kawa Z.

Appl Microbiol Biotechnol. 2017 Feb;101(3):1203-1216. doi: 10.1007/s00253-016-7924-7. Epub 2016 Oct 21.

18.

A Burkholderia Type VI Effector Deamidates Rho GTPases to Activate the Pyrin Inflammasome and Trigger Inflammation.

Aubert DF, Xu H, Yang J, Shi X, Gao W, Li L, Bisaro F, Chen S, Valvano MA, Shao F.

Cell Host Microbe. 2016 May 11;19(5):664-74. doi: 10.1016/j.chom.2016.04.004. Epub 2016 Apr 28.

19.

Lipopolysaccharide modification in Gram-negative bacteria during chronic infection.

Maldonado RF, Sá-Correia I, Valvano MA.

FEMS Microbiol Rev. 2016 Jul;40(4):480-93. doi: 10.1093/femsre/fuw007. Epub 2016 Apr 12. Review.

20.

Tyrosine Phosphorylation and Dephosphorylation in Burkholderia cenocepacia Affect Biofilm Formation, Growth under Nutritional Deprivation, and Pathogenicity.

Andrade A, Tavares-Carreón F, Khodai-Kalaki M, Valvano MA.

Appl Environ Microbiol. 2015 Nov 20;82(3):843-56. doi: 10.1128/AEM.03513-15. Print 2016 Feb 1.

21.

ArnT proteins that catalyze the glycosylation of lipopolysaccharide share common features with bacterial N-oligosaccharyltransferases.

Tavares-Carreón F, Fathy Mohamed Y, Andrade A, Valvano MA.

Glycobiology. 2016 Mar;26(3):286-300. doi: 10.1093/glycob/cwv095. Epub 2015 Oct 29.

22.

Quantification of type VI secretion system activity in macrophages infected with Burkholderia cenocepacia.

Aubert DF, Hu S, Valvano MA.

Microbiology. 2015 Nov;161(11):2161-73. doi: 10.1099/mic.0.000174. Epub 2015 Sep 11.

PMID:
26364149
23.

Phenotypic characterization of an international Pseudomonas aeruginosa reference panel: strains of cystic fibrosis (CF) origin show less in vivo virulence than non-CF strains.

Cullen L, Weiser R, Olszak T, Maldonado RF, Moreira AS, Slachmuylders L, Brackman G, Paunova-Krasteva TS, Zarnowiec P, Czerwonka G, Reilly J, Drevinek P, Kaca W, Melter O, De Soyza A, Perry A, Winstanley C, Stoitsova SR, Lavigne R, Mahenthiralingam E, Sá-Correia I, Coenye T, Drulis-Kawa Z, Augustyniak D, Valvano MA, McClean S.

Microbiology. 2015 Oct;161(10):1961-77. doi: 10.1099/mic.0.000155. Epub 2015 Aug 6.

PMID:
26253522
24.

Intracellular survival of Burkholderia cepacia complex in phagocytic cells.

Valvano MA.

Can J Microbiol. 2015 Sep;61(9):607-15. doi: 10.1139/cjm-2015-0316. Epub 2015 Jun 30.

25.

Identification of synergists that potentiate the action of polymyxin B against Burkholderia cenocepacia.

Loutet SA, El-Halfawy OM, Jassem AN, López JM, Medarde AF, Speert DP, Davies JE, Valvano MA.

Int J Antimicrob Agents. 2015 Oct;46(4):376-80. doi: 10.1016/j.ijantimicag.2015.05.010. Epub 2015 Jun 22.

PMID:
26187366
26.

Activation of Human Toll-like Receptor 4 (TLR4)·Myeloid Differentiation Factor 2 (MD-2) by Hypoacylated Lipopolysaccharide from a Clinical Isolate of Burkholderia cenocepacia.

Di Lorenzo F, Kubik Ł, Oblak A, Lorè NI, Cigana C, Lanzetta R, Parrilli M, Hamad MA, De Soyza A, Silipo A, Jerala R, Bragonzi A, Valvano MA, Martín-Santamaría S, Molinaro A.

J Biol Chem. 2015 Aug 28;290(35):21305-19. doi: 10.1074/jbc.M115.649087. Epub 2015 Jul 9.

27.

Burkholderia cenocepacia Lipopolysaccharide Modification and Flagellin Glycosylation Affect Virulence but Not Innate Immune Recognition in Plants.

Khodai-Kalaki M, Andrade A, Fathy Mohamed Y, Valvano MA.

MBio. 2015 Jun 4;6(3):e00679. doi: 10.1128/mBio.00679-15.

29.
30.

Role of capsular modified heptose in the virulence of Campylobacter jejuni.

Wong A, Lange D, Houle S, Arbatsky NP, Valvano MA, Knirel YA, Dozois CM, Creuzenet C.

Mol Microbiol. 2015 Jun;96(6):1136-58. doi: 10.1111/mmi.12995. Epub 2015 Apr 11.

31.

Antimicrobial heteroresistance: an emerging field in need of clarity.

El-Halfawy OM, Valvano MA.

Clin Microbiol Rev. 2015 Jan;28(1):191-207. doi: 10.1128/CMR.00058-14. Review.

32.

A markerless deletion method for genetic manipulation of Burkholderia cenocepacia and other multidrug-resistant gram-negative bacteria.

Aubert DF, Hamad MA, Valvano MA.

Methods Mol Biol. 2014;1197:311-27. doi: 10.1007/978-1-4939-1261-2_18.

PMID:
25172289
33.

Elucidation of the Burkholderia cenocepacia hopanoid biosynthesis pathway uncovers functions for conserved proteins in hopanoid-producing bacteria.

Schmerk CL, Welander PV, Hamad MA, Bain KL, Bernards MA, Summons RE, Valvano MA.

Environ Microbiol. 2015 Mar;17(3):735-50. doi: 10.1111/1462-2920.12509. Epub 2014 Jun 24.

PMID:
24888970
34.

Identification of the flagellin glycosylation system in Burkholderia cenocepacia and the contribution of glycosylated flagellin to evasion of human innate immune responses.

Hanuszkiewicz A, Pittock P, Humphries F, Moll H, Rosales AR, Molinaro A, Moynagh PN, Lajoie GA, Valvano MA.

J Biol Chem. 2014 Jul 4;289(27):19231-44. doi: 10.1074/jbc.M114.562603. Epub 2014 May 19.

35.

Putrescine reduces antibiotic-induced oxidative stress as a mechanism of modulation of antibiotic resistance in Burkholderia cenocepacia.

El-Halfawy OM, Valvano MA.

Antimicrob Agents Chemother. 2014 Jul;58(7):4162-71. doi: 10.1128/AAC.02649-14. Epub 2014 May 12.

36.

A Burkholderia cenocepacia gene encoding a non-functional tyrosine phosphatase is required for the delayed maturation of the bacteria-containing vacuoles in macrophages.

Andrade A, Valvano MA.

Microbiology. 2014 Jul;160(Pt 7):1332-45. doi: 10.1099/mic.0.077206-0. Epub 2014 Apr 12.

PMID:
24728272
37.

A Burkholderia cenocepacia MurJ (MviN) homolog is essential for cell wall peptidoglycan synthesis and bacterial viability.

Mohamed YF, Valvano MA.

Glycobiology. 2014 Jun;24(6):564-76. doi: 10.1093/glycob/cwu025. Epub 2014 Mar 31.

38.

Communication is key: do bacteria use a universal 'language' to spread resistance?

El-Halfawy OM, Valvano MA.

Future Microbiol. 2013 Nov;8(11):1357-9. doi: 10.2217/fmb.13.122. No abstract available.

39.

Characterization of the AtsR hybrid sensor kinase phosphorelay pathway and identification of its response regulator in Burkholderia cenocepacia.

Khodai-Kalaki M, Aubert DF, Valvano MA.

J Biol Chem. 2013 Oct 18;288(42):30473-84. doi: 10.1074/jbc.M113.489914. Epub 2013 Sep 6.

40.

Chemical communication of antibiotic resistance by a highly resistant subpopulation of bacterial cells.

El-Halfawy OM, Valvano MA.

PLoS One. 2013 Jul 3;8(7):e68874. doi: 10.1371/journal.pone.0068874. Print 2013.

41.

In vitro O-antigen ligase assay.

Ruan X, Valvano MA.

Methods Mol Biol. 2013;1022:185-97. doi: 10.1007/978-1-62703-465-4_15.

PMID:
23765663
42.

In vitro UDP-sugar:undecaprenyl-phosphate sugar-1-phosphate transferase assay and product detection by thin layer chromatography.

Patel KB, Valvano MA.

Methods Mol Biol. 2013;1022:173-83. doi: 10.1007/978-1-62703-465-4_14.

PMID:
23765662
43.

The unexpected discovery of a novel low-oxygen-activated locus for the anoxic persistence of Burkholderia cenocepacia.

Sass AM, Schmerk C, Agnoli K, Norville PJ, Eberl L, Valvano MA, Mahenthiralingam E.

ISME J. 2013 Aug;7(8):1568-81. doi: 10.1038/ismej.2013.36. Epub 2013 Mar 14.

44.

Dam methylation participates in the regulation of PmrA/PmrB and RcsC/RcsD/RcsB two component regulatory systems in Salmonella enterica serovar Enteritidis.

Sarnacki SH, Castañeda Mdel R, Noto Llana M, Giacomodonato MN, Valvano MÁ, Cerquetti MC.

PLoS One. 2013;8(2):e56474. doi: 10.1371/journal.pone.0056474. Epub 2013 Feb 13.

45.

Structural-functional studies of Burkholderia cenocepacia D-glycero-β-D-manno-heptose 7-phosphate kinase (HldA) and characterization of inhibitors with antibiotic adjuvant and antivirulence properties.

Lee TW, Verhey TB, Antiperovitch PA, Atamanyuk D, Desroy N, Oliveira C, Denis A, Gerusz V, Drocourt E, Loutet SA, Hamad MA, Stanetty C, Andres SN, Sugiman-Marangos S, Kosma P, Valvano MA, Moreau F, Junop MS.

J Med Chem. 2013 Feb 28;56(4):1405-17. doi: 10.1021/jm301483h. Epub 2013 Jan 22.

46.

Depletion of the ubiquitin-binding adaptor molecule SQSTM1/p62 from macrophages harboring cftr ΔF508 mutation improves the delivery of Burkholderia cenocepacia to the autophagic machinery.

Abdulrahman BA, Khweek AA, Akhter A, Caution K, Tazi M, Hassan H, Zhang Y, Rowland PD, Malhotra S, Aeffner F, Davis IC, Valvano MA, Amer AO.

J Biol Chem. 2013 Jan 18;288(3):2049-58. doi: 10.1074/jbc.M112.411728. Epub 2012 Nov 12.

47.

Burkholderia multivorans survival and trafficking within macrophages.

Schmerk CL, Valvano MA.

J Med Microbiol. 2013 Feb;62(Pt 2):173-84. doi: 10.1099/jmm.0.051243-0. Epub 2012 Oct 25.

PMID:
23105020
48.

Polysaccharide co-polymerases: the enigmatic conductors of the O-antigen assembly orchestra.

Kalynych S, Valvano MA, Cygler M.

Protein Eng Des Sel. 2012 Nov;25(11):797-802. doi: 10.1093/protein/gzs075. Epub 2012 Oct 24. Review.

PMID:
23100544
49.

Non-genetic mechanisms communicating antibiotic resistance: rethinking strategies for antimicrobial drug design.

El-Halfawy OM, Valvano MA.

Expert Opin Drug Discov. 2012 Oct;7(10):923-33. Epub 2012 Aug 4. Review.

PMID:
22860901
50.

Burkholderia cenocepacia type VI secretion system mediates escape of type II secreted proteins into the cytoplasm of infected macrophages.

Rosales-Reyes R, Aubert DF, Tolman JS, Amer AO, Valvano MA.

PLoS One. 2012;7(7):e41726. doi: 10.1371/journal.pone.0041726. Epub 2012 Jul 25.

Supplemental Content

Loading ...
Support Center