Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 193

1.

Extracellular Nucleotides and P2 Receptors in Renal Function.

Vallon V, Unwin RJ, Inscho EW, Leipziger J, Kishore BK.

Physiol Rev. 2019 Aug 22. doi: 10.1152/physrev.00038.2018. [Epub ahead of print]

PMID:
31437091
2.

Effect of renal tubule-specific knockdown of the Na+/H+ exchanger NHE3 in Akita diabetic mice.

Onishi A, Fu Y, Darshi M, Crespo-Masip M, Huang W, Song P, Patel R, Kim YC, Nespoux J, Freeman B, Soleimani M, Thomson S, Sharma K, Vallon V.

Am J Physiol Renal Physiol. 2019 Aug 1;317(2):F419-F434. doi: 10.1152/ajprenal.00497.2018. Epub 2019 Jun 5.

PMID:
31166707
3.

Knockout of Na+-glucose cotransporter SGLT1 mitigates diabetes-induced upregulation of nitric oxide synthase NOS1 in the macula densa and glomerular hyperfiltration.

Song P, Huang W, Onishi A, Patel R, Kim YC, van Ginkel C, Fu Y, Freeman B, Koepsell H, Thomson S, Liu R, Vallon V.

Am J Physiol Renal Physiol. 2019 Jul 1;317(1):F207-F217. doi: 10.1152/ajprenal.00120.2019. Epub 2019 May 15.

PMID:
31091127
4.

Gene deletion of the Na+-glucose cotransporter SGLT1 ameliorates kidney recovery in a murine model of acute kidney injury induced by ischemia-reperfusion.

Nespoux J, Patel R, Hudkins KL, Huang W, Freeman B, Kim YC, Koepsell H, Alpers CE, Vallon V.

Am J Physiol Renal Physiol. 2019 Jun 1;316(6):F1201-F1210. doi: 10.1152/ajprenal.00111.2019. Epub 2019 Apr 17.

PMID:
30995111
5.

How Do Kidneys Adapt to a Deficit or Loss in Nephron Number?

Fattah H, Layton A, Vallon V.

Physiology (Bethesda). 2019 May 1;34(3):189-197. doi: 10.1152/physiol.00052.2018. Review.

PMID:
30968755
6.

Macula Densa SGLT1-NOS1-Tubuloglomerular Feedback Pathway, a New Mechanism for Glomerular Hyperfiltration during Hyperglycemia.

Zhang J, Wei J, Jiang S, Xu L, Wang L, Cheng F, Buggs J, Koepsell H, Vallon V, Liu R.

J Am Soc Nephrol. 2019 Apr;30(4):578-593. doi: 10.1681/ASN.2018080844. Epub 2019 Mar 13.

PMID:
30867247
7.

SGLT2 inhibition and renal urate excretion: role of luminal glucose, GLUT9, and URAT1.

Novikov A, Fu Y, Huang W, Freeman B, Patel R, van Ginkel C, Koepsell H, Busslinger M, Onishi A, Nespoux J, Vallon V.

Am J Physiol Renal Physiol. 2019 Jan 1;316(1):F173-F185. doi: 10.1152/ajprenal.00462.2018. Epub 2018 Nov 14.

PMID:
30427222
8.

Development of SGLT1 and SGLT2 inhibitors.

Rieg T, Vallon V.

Diabetologia. 2018 Oct;61(10):2079-2086. doi: 10.1007/s00125-018-4654-7. Epub 2018 Aug 22. Review.

9.

Renal tubular solute transport and oxygen consumption: insights from computational models.

Layton AT, Vallon V.

Curr Opin Nephrol Hypertens. 2018 Sep;27(5):384-389. doi: 10.1097/MNH.0000000000000435. Review.

PMID:
30016311
10.

SGLT2 inhibition and kidney protection.

Nespoux J, Vallon V.

Clin Sci (Lond). 2018 Jun 28;132(12):1329-1339. doi: 10.1042/CS20171298. Print 2018 Jun 29. Review.

11.

Tubular Recovery after Acute Kidney Injury.

Fattah H, Vallon V.

Nephron. 2018;140(2):140-143. doi: 10.1159/000490007. Epub 2018 May 31. Review.

12.

Unmasking a sustained negative effect of SGLT2 inhibition on body fluid volume in the rat.

Masuda T, Watanabe Y, Fukuda K, Watanabe M, Onishi A, Ohara K, Imai T, Koepsell H, Muto S, Vallon V, Nagata D.

Am J Physiol Renal Physiol. 2018 Sep 1;315(3):F653-F664. doi: 10.1152/ajprenal.00143.2018. Epub 2018 May 23.

13.

The Potential Role of SGLT2 Inhibitors in the Treatment of Type 1 Diabetes Mellitus.

Fattah H, Vallon V.

Drugs. 2018 May;78(7):717-726. doi: 10.1007/s40265-018-0901-y. Review.

14.

Renal Effects of Incretin-Based Diabetes Therapies: Pre-clinical Predictions and Clinical Trial Outcomes.

Thomson SC, Vallon V.

Curr Diab Rep. 2018 Apr 13;18(5):28. doi: 10.1007/s11892-018-0991-7. Review.

15.

Cardiovascular benefits of SGLT2 inhibition in diabetes and chronic kidney diseases.

Layton AT, Vallon V.

Acta Physiol (Oxf). 2018 Apr;222(4):e13050. doi: 10.1111/apha.13050. Epub 2018 Feb 22. No abstract available.

16.

Organic anion transporter OAT3 enhances the glucosuric effect of the SGLT2 inhibitor empagliflozin.

Fu Y, Breljak D, Onishi A, Batz F, Patel R, Huang W, Song P, Freeman B, Mayoux E, Koepsell H, Anzai N, Nigam SK, Sabolic I, Vallon V.

Am J Physiol Renal Physiol. 2018 Aug 1;315(2):F386-F394. doi: 10.1152/ajprenal.00503.2017. Epub 2018 Feb 7.

17.

SGLT2 inhibition in a kidney with reduced nephron number: modeling and analysis of solute transport and metabolism.

Layton AT, Vallon V.

Am J Physiol Renal Physiol. 2018 May 1;314(5):F969-F984. doi: 10.1152/ajprenal.00551.2017. Epub 2018 Jan 17.

18.

Renal potassium handling in rats with subtotal nephrectomy: modeling and analysis.

Layton AT, Edwards A, Vallon V.

Am J Physiol Renal Physiol. 2018 Apr 1;314(4):F643-F657. doi: 10.1152/ajprenal.00460.2017. Epub 2017 Dec 13.

19.

Diabetes mellitus: Cardiovascular and renal benefits of SGLT2 inhibition: insights from CANVAS.

Vallon V, Thomson SC.

Nat Rev Nephrol. 2017 Sep;13(9):517-518. doi: 10.1038/nrneph.2017.113. Epub 2017 Aug 7. No abstract available.

PMID:
28781373
20.

Adaptive changes in GFR, tubular morphology, and transport in subtotal nephrectomized kidneys: modeling and analysis.

Layton AT, Edwards A, Vallon V.

Am J Physiol Renal Physiol. 2017 Aug 1;313(2):F199-F209. doi: 10.1152/ajprenal.00018.2017. Epub 2017 Mar 22.

21.

Primary proximal tubule hyperreabsorption and impaired tubular transport counterregulation determine glomerular hyperfiltration in diabetes: a modeling analysis.

Hallow KM, Gebremichael Y, Helmlinger G, Vallon V.

Am J Physiol Renal Physiol. 2017 May 1;312(5):F819-F835. doi: 10.1152/ajprenal.00497.2016. Epub 2017 Feb 1.

22.

Ketosis and diabetic ketoacidosis in response to SGLT2 inhibitors: Basic mechanisms and therapeutic perspectives.

Qiu H, Novikov A, Vallon V.

Diabetes Metab Res Rev. 2017 Jul;33(5). doi: 10.1002/dmrr.2886. Epub 2017 Feb 23. Review.

PMID:
28099783
23.

Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition.

Vallon V, Thomson SC.

Diabetologia. 2017 Feb;60(2):215-225. doi: 10.1007/s00125-016-4157-3. Epub 2016 Nov 22. Review.

24.
25.

Solute transport and oxygen consumption along the nephrons: effects of Na+ transport inhibitors.

Layton AT, Laghmani K, Vallon V, Edwards A.

Am J Physiol Renal Physiol. 2016 Dec 1;311(6):F1217-F1229. doi: 10.1152/ajprenal.00294.2016. Epub 2016 Oct 5.

26.

A computational model for simulating solute transport and oxygen consumption along the nephrons.

Layton AT, Vallon V, Edwards A.

Am J Physiol Renal Physiol. 2016 Dec 1;311(6):F1378-F1390. doi: 10.1152/ajprenal.00293.2016. Epub 2016 Oct 5.

27.

SGK1-dependent ENaC processing and trafficking in mice with high dietary K intake and elevated aldosterone.

Yang L, Frindt G, Lang F, Kuhl D, Vallon V, Palmer LG.

Am J Physiol Renal Physiol. 2017 Jan 1;312(1):F65-F76. doi: 10.1152/ajprenal.00257.2016. Epub 2016 Jul 13.

28.

Erratum: Once daily administration of the SGLT2 inhibitor, empagliflozin, attenuates markers of renal fibrosis without improving albuminuria in diabetic db/db mice.

Gallo LA, Ward MS, Fotheringham AK, Zhuang A, Borg DJ, Flemming NB, Harvie BM, Kinneally TL, Yeh SM, McCarthy DA, Koepsell H, Vallon V, Pollock C, Panchapakesan U, Forbes JM.

Sci Rep. 2016 Jul 7;6:28124. doi: 10.1038/srep28124. No abstract available.

29.

Once daily administration of the SGLT2 inhibitor, empagliflozin, attenuates markers of renal fibrosis without improving albuminuria in diabetic db/db mice.

Gallo LA, Ward MS, Fotheringham AK, Zhuang A, Borg DJ, Flemming NB, Harvie BM, Kinneally TL, Yeh SM, McCarthy DA, Koepsell H, Vallon V, Pollock C, Panchapakesan U, Forbes JM.

Sci Rep. 2016 May 26;6:26428. doi: 10.1038/srep26428. Erratum in: Sci Rep. 2016 Jul 07;6:28124.

30.

Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus.

Song P, Onishi A, Koepsell H, Vallon V.

Expert Opin Ther Targets. 2016 Sep;20(9):1109-25. doi: 10.1517/14728222.2016.1168808. Epub 2016 Apr 12. Review.

31.

Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron.

Layton AT, Vallon V, Edwards A.

Am J Physiol Renal Physiol. 2016 Jun 1;310(11):F1269-83. doi: 10.1152/ajprenal.00543.2015. Epub 2016 Jan 13.

32.

Sodium glucose cotransporter 2 inhibition in the diabetic kidney: an update.

Novikov A, Vallon V.

Curr Opin Nephrol Hypertens. 2016 Jan;25(1):50-8. doi: 10.1097/MNH.0000000000000187. Review.

33.

A comprehensive review of the pharmacodynamics of the SGLT2 inhibitor empagliflozin in animals and humans.

Michel MC, Mayoux E, Vallon V.

Naunyn Schmiedebergs Arch Pharmacol. 2015 Aug;388(8):801-16. doi: 10.1007/s00210-015-1134-1. Epub 2015 Jun 26. Review.

34.

Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition.

Layton AT, Vallon V, Edwards A.

Am J Physiol Renal Physiol. 2015 Jun 15;308(12):F1343-57. doi: 10.1152/ajprenal.00007.2015. Epub 2015 Apr 8.

35.

Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences.

Gallo LA, Wright EM, Vallon V.

Diab Vasc Dis Res. 2015 Mar;12(2):78-89. doi: 10.1177/1479164114561992. Epub 2015 Jan 23. Review.

36.

PPARγ agonist-induced fluid retention depends on αENaC expression in connecting tubules.

Fu Y, Gerasimova M, Batz F, Kuczkowski A, Alam Y, Sanders PW, Ronzaud C, Hummler E, Vallon V.

Nephron. 2015;129(1):68-74. doi: 10.1159/000370254. Epub 2014 Dec 19.

37.

Mineralocorticoid-induced sodium appetite and renal salt retention: evidence for common signaling and effector mechanisms.

Fu Y, Vallon V.

Nephron Physiol. 2014;128(1-2):8-16. doi: 10.1159/000368264. Epub 2014 Nov 6. Review.

38.

Do tubular changes in the diabetic kidney affect the susceptibility to acute kidney injury?

Vallon V.

Nephron Clin Pract. 2014;127(1-4):133-8. doi: 10.1159/000363554. Epub 2014 Sep 24. Review.

39.

The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus.

Vallon V.

Annu Rev Med. 2015;66:255-70. doi: 10.1146/annurev-med-051013-110046. Epub 2014 Oct 17. Review.

PMID:
25341005
40.

Molecular mechanisms of calcium-sensing receptor-mediated calcium signaling in the modulation of epithelial ion transport and bicarbonate secretion.

Xie R, Dong X, Wong C, Vallon V, Tang B, Sun J, Yang S, Dong H.

J Biol Chem. 2014 Dec 12;289(50):34642-53. doi: 10.1074/jbc.M114.592774. Epub 2014 Oct 20.

41.

Intestinal regulation of urinary sodium excretion and the pathophysiology of diabetic kidney disease: a focus on glucagon-like peptide 1 and dipeptidyl peptidase 4.

Vallon V, Docherty NG.

Exp Physiol. 2014 Sep;99(9):1140-5. doi: 10.1113/expphysiol.2014.078766. Epub 2014 Aug 1. Review.

42.

Reduced renal calcium excretion in the absence of sclerostin expression: evidence for a novel calcium-regulating bone kidney axis.

Kumar R, Vallon V.

J Am Soc Nephrol. 2014 Oct;25(10):2159-68. doi: 10.1681/ASN.2014020166. Epub 2014 May 29. Review.

43.

Effects of NKCC2 isoform regulation on NaCl transport in thick ascending limb and macula densa: a modeling study.

Edwards A, Castrop H, Laghmani K, Vallon V, Layton AT.

Am J Physiol Renal Physiol. 2014 Jul 15;307(2):F137-46. doi: 10.1152/ajprenal.00158.2014. Epub 2014 May 21.

44.

Tribbles homolog 3 attenuates mammalian target of rapamycin complex-2 signaling and inflammation in the diabetic kidney.

Borsting E, Patel SV, Declèves AE, Lee SJ, Rahman QM, Akira S, Satriano J, Sharma K, Vallon V, Cunard R.

J Am Soc Nephrol. 2014 Sep;25(9):2067-78. doi: 10.1681/ASN.2013070811. Epub 2014 Mar 27.

45.

P2Y2 receptor activation inhibits the expression of the sodium-chloride cotransporter NCC in distal convoluted tubule cells.

Gailly P, Szutkowska M, Olinger E, Debaix H, Seghers F, Janas S, Vallon V, Devuyst O.

Pflugers Arch. 2014 Nov;466(11):2035-47. doi: 10.1007/s00424-013-1438-2. Epub 2014 Jan 25.

46.

Dipeptidyl peptidase IV inhibitor lowers PPARγ agonist-induced body weight gain by affecting food intake, fat mass, and beige/brown fat but not fluid retention.

Masuda T, Fu Y, Eguchi A, Czogalla J, Rose MA, Kuczkowski A, Gerasimova M, Feldstein AE, Scadeng M, Vallon V.

Am J Physiol Endocrinol Metab. 2014 Feb 15;306(4):E388-98. doi: 10.1152/ajpendo.00124.2013. Epub 2013 Dec 17.

47.

SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice.

Vallon V, Gerasimova M, Rose MA, Masuda T, Satriano J, Mayoux E, Koepsell H, Thomson SC, Rieg T.

Am J Physiol Renal Physiol. 2014 Jan;306(2):F194-204. doi: 10.1152/ajprenal.00520.2013. Epub 2013 Nov 13.

48.

Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia.

Rieg T, Masuda T, Gerasimova M, Mayoux E, Platt K, Powell DR, Thomson SC, Koepsell H, Vallon V.

Am J Physiol Renal Physiol. 2014 Jan;306(2):F188-93. doi: 10.1152/ajprenal.00518.2013. Epub 2013 Nov 13.

49.

In vivo and ex vivo analysis of tubule function.

Stockand JD, Vallon V, Ortiz P.

Compr Physiol. 2012 Oct;2(4):2495-525. doi: 10.1002/cphy.c100051. Review.

PMID:
23720256
50.

Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus.

Vallon V, Rose M, Gerasimova M, Satriano J, Platt KA, Koepsell H, Cunard R, Sharma K, Thomson SC, Rieg T.

Am J Physiol Renal Physiol. 2013 Jan 15;304(2):F156-67. doi: 10.1152/ajprenal.00409.2012. Epub 2012 Nov 14.

Supplemental Content

Loading ...
Support Center