Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 19

1.

A TetR-Family Protein (CAETHG_0459) Activates Transcription From a New Promoter Motif Associated With Essential Genes for Autotrophic Growth in Acetogens.

de Souza Pinto Lemgruber R, Valgepea K, Gonzalez Garcia RA, de Bakker C, Palfreyman RW, Tappel R, Köpke M, Simpson SD, Nielsen LK, Marcellin E.

Front Microbiol. 2019 Nov 15;10:2549. doi: 10.3389/fmicb.2019.02549. eCollection 2019.

2.

Quantitative analysis of tetrahydrofolate metabolites from clostridium autoethanogenum.

de Souza Pinto Lemgruber R, Valgepea K, Hodson MP, Tappel R, Simpson SD, Köpke M, Nielsen LK, Marcellin E.

Metabolomics. 2018 Feb 16;14(3):35. doi: 10.1007/s11306-018-1331-2.

PMID:
30830344
3.

Systems-level engineering and characterisation of Clostridium autoethanogenum through heterologous production of poly-3-hydroxybutyrate (PHB).

de Souza Pinto Lemgruber R, Valgepea K, Tappel R, Behrendorff JB, Palfreyman RW, Plan M, Hodson MP, Simpson SD, Nielsen LK, Köpke M, Marcellin E.

Metab Eng. 2019 May;53:14-23. doi: 10.1016/j.ymben.2019.01.003. Epub 2019 Jan 11.

PMID:
30641139
4.

H2 drives metabolic rearrangements in gas-fermenting Clostridium autoethanogenum.

Valgepea K, de Souza Pinto Lemgruber R, Abdalla T, Binos S, Takemori N, Takemori A, Tanaka Y, Tappel R, Köpke M, Simpson SD, Nielsen LK, Marcellin E.

Biotechnol Biofuels. 2018 Mar 1;11:55. doi: 10.1186/s13068-018-1052-9. eCollection 2018.

5.

Maintenance of ATP Homeostasis Triggers Metabolic Shifts in Gas-Fermenting Acetogens.

Valgepea K, de Souza Pinto Lemgruber R, Meaghan K, Palfreyman RW, Abdalla T, Heijstra BD, Behrendorff JB, Tappel R, Köpke M, Simpson SD, Nielsen LK, Marcellin E.

Cell Syst. 2017 May 24;4(5):505-515.e5. doi: 10.1016/j.cels.2017.04.008. Epub 2017 May 17.

6.

Arginine deiminase pathway provides ATP and boosts growth of the gas-fermenting acetogen Clostridium autoethanogenum.

Valgepea K, Loi KQ, Behrendorff JB, Lemgruber RSP, Plan M, Hodson MP, Köpke M, Nielsen LK, Marcellin E.

Metab Eng. 2017 May;41:202-211. doi: 10.1016/j.ymben.2017.04.007. Epub 2017 Apr 23.

PMID:
28442386
7.

Advanced continuous cultivation methods for systems microbiology.

Adamberg K, Valgepea K, Vilu R.

Microbiology. 2015 Sep;161(9):1707-1719. doi: 10.1099/mic.0.000146. Epub 2015 Jul 23. Review.

PMID:
26220303
8.

Proteome reallocation in Escherichia coli with increasing specific growth rate.

Peebo K, Valgepea K, Maser A, Nahku R, Adamberg K, Vilu R.

Mol Biosyst. 2015 Apr;11(4):1184-93. doi: 10.1039/c4mb00721b.

PMID:
25712329
9.

Lean-proteome strains - next step in metabolic engineering.

Valgepea K, Peebo K, Adamberg K, Vilu R.

Front Bioeng Biotechnol. 2015 Feb 6;3:11. doi: 10.3389/fbioe.2015.00011. eCollection 2015. No abstract available.

10.

Coordinated activation of PTA-ACS and TCA cycles strongly reduces overflow metabolism of acetate in Escherichia coli.

Peebo K, Valgepea K, Nahku R, Riis G, Oun M, Adamberg K, Vilu R.

Appl Microbiol Biotechnol. 2014 Jun;98(11):5131-43. doi: 10.1007/s00253-014-5613-y. Epub 2014 Mar 15.

PMID:
24633370
11.

Integrating gene and protein expression data with genome-scale metabolic networks to infer functional pathways.

Pey J, Valgepea K, Rubio A, Beasley JE, Planes FJ.

BMC Syst Biol. 2013 Dec 8;7:134. doi: 10.1186/1752-0509-7-134.

12.

Escherichia coli achieves faster growth by increasing catalytic and translation rates of proteins.

Valgepea K, Adamberg K, Seiman A, Vilu R.

Mol Biosyst. 2013 Sep;9(9):2344-58. doi: 10.1039/c3mb70119k.

PMID:
23824091
13.

Comparison and applications of label-free absolute proteome quantification methods on Escherichia coli.

Arike L, Valgepea K, Peil L, Nahku R, Adamberg K, Vilu R.

J Proteomics. 2012 Sep 18;75(17):5437-48. doi: 10.1016/j.jprot.2012.06.020. Epub 2012 Jul 5. Erratum in: J Proteomics. 2013 Oct 8;91:619.

PMID:
22771841
14.

Decrease of energy spilling in Escherichia coli continuous cultures with rising specific growth rate and carbon wasting.

Valgepea K, Adamberg K, Vilu R.

BMC Syst Biol. 2011 Jul 5;5:106. doi: 10.1186/1752-0509-5-106.

15.

Stock culture heterogeneity rather than new mutational variation complicates short-term cell physiology studies of Escherichia coli K-12 MG1655 in continuous culture.

Nahku R, Peebo K, Valgepea K, Barrick JE, Adamberg K, Vilu R.

Microbiology. 2011 Sep;157(Pt 9):2604-2610. doi: 10.1099/mic.0.050658-0. Epub 2011 Jun 23.

16.

Systems biology approach reveals that overflow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA synthetase.

Valgepea K, Adamberg K, Nahku R, Lahtvee PJ, Arike L, Vilu R.

BMC Syst Biol. 2010 Dec 1;4:166. doi: 10.1186/1752-0509-4-166.

17.

Specific growth rate dependent transcriptome profiling of Escherichia coli K12 MG1655 in accelerostat cultures.

Nahku R, Valgepea K, Lahtvee PJ, Erm S, Abner K, Adamberg K, Vilu R.

J Biotechnol. 2010 Jan 1;145(1):60-5. doi: 10.1016/j.jbiotec.2009.10.007.

PMID:
19861135
18.

Steady state growth space study of Lactococcus lactis in D-stat cultures.

Lahtvee PJ, Valgepea K, Nahku R, Abner K, Adamberg K, Vilu R.

Antonie Van Leeuwenhoek. 2009 Nov;96(4):487-96. doi: 10.1007/s10482-009-9363-2. Epub 2009 Jul 15.

PMID:
19603284
19.

Quasi steady state growth of Lactococcus lactis in glucose-limited acceleration stat (A-stat) cultures.

Adamberg K, Lahtvee PJ, Valgepea K, Abner K, Vilu R.

Antonie Van Leeuwenhoek. 2009 Mar;95(3):219-26. doi: 10.1007/s10482-009-9305-z. Epub 2009 Jan 30.

PMID:
19184516

Supplemental Content

Loading ...
Support Center