Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 74

1.

Insights into the Autoproteolytic Processing and Catalytic Mechanism of the Chlamydia trachomatis Virulence-Associated Protease CPAF.

Dudiak BM, Maksimchuk KR, Bednar MM, Podracky CJ, Burg JM, Nguyen TM, Nwogbo FO, Valdivia RH, McCafferty DG.

Biochemistry. 2019 Aug 12. doi: 10.1021/acs.biochem.9b00522. [Epub ahead of print]

PMID:
31386347
2.

A renewed tool kit to explore Chlamydia pathogenesis: from molecular genetics to new infection models.

Dolat L, Valdivia RH.

F1000Res. 2019 Jun 21;8. pii: F1000 Faculty Rev-935. doi: 10.12688/f1000research.18832.1. eCollection 2019. Review.

3.

Ptr/CTL0175 Is Required for the Efficient Recovery of Chlamydia trachomatis From Stress Induced by Gamma-Interferon.

Panzetta ME, Luján AL, Bastidas RJ, Damiani MT, Valdivia RH, Saka HA.

Front Microbiol. 2019 Apr 10;10:756. doi: 10.3389/fmicb.2019.00756. eCollection 2019.

4.

Chlamydia Persistence: A Survival Strategy to Evade Antimicrobial Effects in-vitro and in-vivo.

Panzetta ME, Valdivia RH, Saka HA.

Front Microbiol. 2018 Dec 12;9:3101. doi: 10.3389/fmicb.2018.03101. eCollection 2018. Review.

5.

A Chlamydia effector combining deubiquitination and acetylation activities induces Golgi fragmentation.

Pruneda JN, Bastidas RJ, Bertsoulaki E, Swatek KN, Santhanam B, Clague MJ, Valdivia RH, Urbé S, Komander D.

Nat Microbiol. 2018 Dec;3(12):1377-1384. doi: 10.1038/s41564-018-0271-y. Epub 2018 Nov 5.

6.

Chlamydia trachomatis fails to protect its growth niche against pro-apoptotic insults.

Sixt BS, Núñez-Otero C, Kepp O, Valdivia RH, Kroemer G.

Cell Death Differ. 2019 Aug;26(8):1485-1500. doi: 10.1038/s41418-018-0224-2. Epub 2018 Oct 30.

PMID:
30375511
7.

The Expanding Molecular Genetics Tool Kit in Chlamydia.

Valdivia RH, Bastidas RJ.

J Bacteriol. 2018 Nov 26;200(24). pii: e00590-18. doi: 10.1128/JB.00590-18. Print 2018 Dec 15.

8.

An Atlas of Genetic Variation Linking Pathogen-Induced Cellular Traits to Human Disease.

Wang L, Pittman KJ, Barker JR, Salinas RE, Stanaway IB, Williams GD, Carroll RJ, Balmat T, Ingham A, Gopalakrishnan AM, Gibbs KD, Antonia AL; eMERGE Network, Heitman J, Lee SC, Jarvik GP, Denny JC, Horner SM, DeLong MR, Valdivia RH, Crosslin DR, Ko DC.

Cell Host Microbe. 2018 Aug 8;24(2):308-323.e6. doi: 10.1016/j.chom.2018.07.007.

9.

Site-specific glycosylation regulates the form and function of the intermediate filament cytoskeleton.

Tarbet HJ, Dolat L, Smith TJ, Condon BM, O'Brien ET 3rd, Valdivia RH, Boyce M.

Elife. 2018 Mar 7;7. pii: e31807. doi: 10.7554/eLife.31807.

10.

Bacterial Subversion of COG-Dependent Membrane Traffic.

Dolat L, Valdivia RH.

Trends Cell Biol. 2017 Dec;27(12):877-878. doi: 10.1016/j.tcb.2017.09.004. Epub 2017 Oct 4.

PMID:
28988619
11.

N-Acylated Derivatives of Sulfamethoxazole Block Chlamydia Fatty Acid Synthesis and Interact with FabF.

Mojica SA, Salin O, Bastidas RJ, Sunduru N, Hedenström M, Andersson CD, Núñez-Otero C, Engström P, Valdivia RH, Elofsson M, Gylfe Å.

Antimicrob Agents Chemother. 2017 Sep 22;61(10). pii: e00716-17. doi: 10.1128/AAC.00716-17. Print 2017 Oct.

12.

The Effector TepP Mediates Recruitment and Activation of Phosphoinositide 3-Kinase on Early Chlamydia trachomatis Vacuoles.

Carpenter V, Chen YS, Dolat L, Valdivia RH.

mSphere. 2017 Jul 19;2(4). pii: e00207-17. doi: 10.1128/mSphere.00207-17. eCollection 2017 Jul-Aug.

13.

Engineering of obligate intracellular bacteria: progress, challenges and paradigms.

McClure EE, Chávez ASO, Shaw DK, Carlyon JA, Ganta RR, Noh SM, Wood DO, Bavoil PM, Brayton KA, Martinez JJ, McBride JW, Valdivia RH, Munderloh UG, Pedra JHF.

Nat Rev Microbiol. 2017 Sep;15(9):544-558. doi: 10.1038/nrmicro.2017.59. Epub 2017 Jun 19. Review.

14.

Assessing the satisfaction and burden within an academic animal care and use program.

Norton JN, Reynolds RP, Chan C, Valdivia RH, Staats HF.

FASEB J. 2017 Sep;31(9):3913-3921. doi: 10.1096/fj.201700072RR. Epub 2017 May 17.

PMID:
28515151
15.

Chlamydia trachomatis' struggle to keep its host alive.

Sixt BS, Valdivia RH, Kroemer G.

Microb Cell. 2017 Mar 2;4(3):101-104. doi: 10.15698/mic2017.03.564.

16.

The Chlamydia trachomatis Inclusion Membrane Protein CpoS Counteracts STING-Mediated Cellular Surveillance and Suicide Programs.

Sixt BS, Bastidas RJ, Finethy R, Baxter RM, Carpenter VK, Kroemer G, Coers J, Valdivia RH.

Cell Host Microbe. 2017 Jan 11;21(1):113-121. doi: 10.1016/j.chom.2016.12.002. Epub 2016 Dec 29.

17.

Genomic sequencing-based mutational enrichment analysis identifies motility genes in a genetically intractable gut microbe.

Bae S, Mueller O, Wong S, Rawls JF, Valdivia RH.

Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):14127-14132. Epub 2016 Nov 23.

18.

Molecular Genetic Analysis of Chlamydia Species.

Sixt BS, Valdivia RH.

Annu Rev Microbiol. 2016 Sep 8;70:179-98. doi: 10.1146/annurev-micro-102215-095539. Review.

PMID:
27607551
19.

Emancipating Chlamydia: Advances in the Genetic Manipulation of a Recalcitrant Intracellular Pathogen.

Bastidas RJ, Valdivia RH.

Microbiol Mol Biol Rev. 2016 Mar 30;80(2):411-27. doi: 10.1128/MMBR.00071-15. Print 2016 Jun. Review.

20.

Discovery of the Elusive UDP-Diacylglucosamine Hydrolase in the Lipid A Biosynthetic Pathway in Chlamydia trachomatis.

Young HE, Zhao J, Barker JR, Guan Z, Valdivia RH, Zhou P.

MBio. 2016 Mar 22;7(2):e00090. doi: 10.1128/mBio.00090-16.

21.

The Chlamydia trachomatis Protease CPAF Contains a Cryptic PDZ-Like Domain with Similarity to Human Cell Polarity and Tight Junction PDZ-Containing Proteins.

Maksimchuk KR, Alser KA, Mou R, Valdivia RH, McCafferty DG.

PLoS One. 2016 Feb 1;11(2):e0147233. doi: 10.1371/journal.pone.0147233. eCollection 2016.

22.

Differential Translocation of Host Cellular Materials into the Chlamydia trachomatis Inclusion Lumen during Chemical Fixation.

Kokes M, Valdivia RH.

PLoS One. 2015 Oct 1;10(10):e0139153. doi: 10.1371/journal.pone.0139153. eCollection 2015.

23.

A Chlamydia trachomatis strain with a chemically generated amino acid substitution (P370L) in the cthtrA gene shows reduced elementary body production.

Marsh JW, Wee BA, Tyndall JD, Lott WB, Bastidas RJ, Caldwell HD, Valdivia RH, Kari L, Huston WM.

BMC Microbiol. 2015 Sep 30;15:194. doi: 10.1186/s12866-015-0533-2.

24.

Integrating chemical mutagenesis and whole-genome sequencing as a platform for forward and reverse genetic analysis of Chlamydia.

Kokes M, Dunn JD, Granek JA, Nguyen BD, Barker JR, Valdivia RH, Bastidas RJ.

Cell Host Microbe. 2015 May 13;17(5):716-25. doi: 10.1016/j.chom.2015.03.014. Epub 2015 Apr 23.

25.

Chlamydia trachomatis Infection Leads to Defined Alterations to the Lipid Droplet Proteome in Epithelial Cells.

Saka HA, Thompson JW, Chen YS, Dubois LG, Haas JT, Moseley A, Valdivia RH.

PLoS One. 2015 Apr 24;10(4):e0124630. doi: 10.1371/journal.pone.0124630. eCollection 2015.

26.

A 2-pyridone-amide inhibitor targets the glucose metabolism pathway of Chlamydia trachomatis.

Engström P, Krishnan KS, Ngyuen BD, Chorell E, Normark J, Silver J, Bastidas RJ, Welch MD, Hultgren SJ, Wolf-Watz H, Valdivia RH, Almqvist F, Bergström S.

MBio. 2014 Dec 30;6(1):e02304-14. doi: 10.1128/mBio.02304-14.

27.

Coxiella burnetii effector proteins that localize to the parasitophorous vacuole membrane promote intracellular replication.

Larson CL, Beare PA, Voth DE, Howe D, Cockrell DC, Bastidas RJ, Valdivia RH, Heinzen RA.

Infect Immun. 2015 Feb;83(2):661-70. doi: 10.1128/IAI.02763-14. Epub 2014 Nov 24.

28.

Search for microRNAs expressed by intracellular bacterial pathogens in infected mammalian cells.

Furuse Y, Finethy R, Saka HA, Xet-Mull AM, Sisk DM, Smith KL, Lee S, Coers J, Valdivia RH, Tobin DM, Cullen BR.

PLoS One. 2014 Sep 3;9(9):e106434. doi: 10.1371/journal.pone.0106434. eCollection 2014.

29.

Reassessing the role of the secreted protease CPAF in Chlamydia trachomatis infection through genetic approaches.

Snavely EA, Kokes M, Dunn JD, Saka HA, Nguyen BD, Bastidas RJ, McCafferty DG, Valdivia RH.

Pathog Dis. 2014 Aug;71(3):336-51. doi: 10.1111/2049-632X.12179. Epub 2014 May 16.

30.

Cell biology at the host-microbe interface.

Troemel E, Valdivia RH.

Mol Biol Cell. 2014 Mar;25(6):729. doi: 10.1091/mbc.E13-11-0668. No abstract available.

31.

The Chlamydia trachomatis type III secretion chaperone Slc1 engages multiple early effectors, including TepP, a tyrosine-phosphorylated protein required for the recruitment of CrkI-II to nascent inclusions and innate immune signaling.

Chen YS, Bastidas RJ, Saka HA, Carpenter VK, Richards KL, Plano GV, Valdivia RH.

PLoS Pathog. 2014 Feb 20;10(2):e1003954. doi: 10.1371/journal.ppat.1003954. eCollection 2014 Feb. Erratum in: PLoS Pathog. 2014 Mar;10(3):e1004094.

32.

Forward genetic approaches in Chlamydia trachomatis.

Nguyen BD, Valdivia RH.

J Vis Exp. 2013 Oct 23;(80):e50636. doi: 10.3791/50636.

33.

Mutations in hemG mediate resistance to salicylidene acylhydrazides, demonstrating a novel link between protoporphyrinogen oxidase (HemG) and Chlamydia trachomatis infectivity.

Engström P, Nguyen BD, Normark J, Nilsson I, Bastidas RJ, Gylfe A, Elofsson M, Fields KA, Valdivia RH, Wolf-Watz H, Bergström S.

J Bacteriol. 2013 Sep;195(18):4221-30. doi: 10.1128/JB.00506-13. Epub 2013 Jul 12.

34.

IRG and GBP host resistance factors target aberrant, "non-self" vacuoles characterized by the missing of "self" IRGM proteins.

Haldar AK, Saka HA, Piro AS, Dunn JD, Henry SC, Taylor GA, Frickel EM, Valdivia RH, Coers J.

PLoS Pathog. 2013;9(6):e1003414. doi: 10.1371/journal.ppat.1003414. Epub 2013 Jun 13.

35.

Chlamydial intracellular survival strategies.

Bastidas RJ, Elwell CA, Engel JN, Valdivia RH.

Cold Spring Harb Perspect Med. 2013 May 1;3(5):a010256. doi: 10.1101/cshperspect.a010256. Review.

36.

STING-dependent recognition of cyclic di-AMP mediates type I interferon responses during Chlamydia trachomatis infection.

Barker JR, Koestler BJ, Carpenter VK, Burdette DL, Waters CM, Vance RE, Valdivia RH.

MBio. 2013 Apr 30;4(3):e00018-13. doi: 10.1128/mBio.00018-13.

37.

Thinking outside the box: new strategies for antichlamydial control.

Valdivia RH.

Future Microbiol. 2012 Apr;7(4):427-9. doi: 10.2217/fmb.12.25. No abstract available.

38.

Virulence determinants in the obligate intracellular pathogen Chlamydia trachomatis revealed by forward genetic approaches.

Nguyen BD, Valdivia RH.

Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1263-8. doi: 10.1073/pnas.1117884109. Epub 2012 Jan 9.

39.

Quantitative proteomics reveals metabolic and pathogenic properties of Chlamydia trachomatis developmental forms.

Saka HA, Thompson JW, Chen YS, Kumar Y, Dubois LG, Moseley MA, Valdivia RH.

Mol Microbiol. 2011 Dec;82(5):1185-203. doi: 10.1111/j.1365-2958.2011.07877.x. Epub 2011 Nov 7.

40.

Chlamydia protease-like activity factor (CPAF): characterization of proteolysis activity in vitro and development of a nanomolar affinity CPAF zymogen-derived inhibitor.

Bednar MM, Jorgensen I, Valdivia RH, McCafferty DG.

Biochemistry. 2011 Sep 6;50(35):7441-3. doi: 10.1021/bi201098r. Epub 2011 Aug 15.

41.

The Chlamydia protease CPAF regulates host and bacterial proteins to maintain pathogen vacuole integrity and promote virulence.

Jorgensen I, Bednar MM, Amin V, Davis BK, Ting JP, McCafferty DG, Valdivia RH.

Cell Host Microbe. 2011 Jul 21;10(1):21-32. doi: 10.1016/j.chom.2011.06.008.

42.

Lipooligosaccharide is required for the generation of infectious elementary bodies in Chlamydia trachomatis.

Nguyen BD, Cunningham D, Liang X, Chen X, Toone EJ, Raetz CR, Zhou P, Valdivia RH.

Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10284-9. doi: 10.1073/pnas.1107478108. Epub 2011 May 31.

43.

Uncivil engineers: Chlamydia, Salmonella and Shigella alter cytoskeleton architecture to invade epithelial cells.

Dunn JD, Valdivia RH.

Future Microbiol. 2010 Aug;5(8):1219-32. doi: 10.2217/fmb.10.77. Review.

PMID:
20722600
44.

cPLA2 regulates the expression of type I interferons and intracellular immunity to Chlamydia trachomatis.

Vignola MJ, Kashatus DF, Taylor GA, Counter CM, Valdivia RH.

J Biol Chem. 2010 Jul 9;285(28):21625-35. doi: 10.1074/jbc.M110.103010. Epub 2010 May 7.

45.

Acquisition of nutrients by Chlamydiae: unique challenges of living in an intracellular compartment.

Saka HA, Valdivia RH.

Curr Opin Microbiol. 2010 Feb;13(1):4-10. doi: 10.1016/j.mib.2009.11.002. Epub 2009 Dec 16. Review.

46.

The Chlamydia type III secretion system C-ring engages a chaperone-effector protein complex.

Spaeth KE, Chen YS, Valdivia RH.

PLoS Pathog. 2009 Sep;5(9):e1000579. doi: 10.1371/journal.ppat.1000579. Epub 2009 Sep 11. Erratum in: PLoS Pathog. 2009 Oct;5(10) doi: 10.1371/annotation/7e073adb-7483-43be-88ec-e318399e76c2.

47.
48.

New insights into Chlamydia intracellular survival mechanisms.

Cocchiaro JL, Valdivia RH.

Cell Microbiol. 2009 Nov;11(11):1571-8. doi: 10.1111/j.1462-5822.2009.01364.x. Epub 2009 Aug 5. Review.

49.

Leading a sheltered life: intracellular pathogens and maintenance of vacuolar compartments.

Kumar Y, Valdivia RH.

Cell Host Microbe. 2009 Jun 18;5(6):593-601. doi: 10.1016/j.chom.2009.05.014. Review.

50.

Actin and intermediate filaments stabilize the Chlamydia trachomatis vacuole by forming dynamic structural scaffolds.

Kumar Y, Valdivia RH.

Cell Host Microbe. 2008 Aug 14;4(2):159-69. doi: 10.1016/j.chom.2008.05.018.

Supplemental Content

Loading ...
Support Center