Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 37

1.

Emergence of the Ug99 lineage of the wheat stem rust pathogen through somatic hybridisation.

Li F, Upadhyaya NM, Sperschneider J, Matny O, Nguyen-Phuc H, Mago R, Raley C, Miller ME, Silverstein KAT, Henningsen E, Hirsch CD, Visser B, Pretorius ZA, Steffenson BJ, Schwessinger B, Dodds PN, Figueroa M.

Nat Commun. 2019 Nov 7;10(1):5068. doi: 10.1038/s41467-019-12927-7.

2.

De Novo Genome Assembly and Comparative Genomics of the Barley Leaf Rust Pathogen Puccinia hordei Identifies Candidates for Three Avirulence Genes.

Chen J, Wu J, Zhang P, Dong C, Upadhyaya NM, Zhou Q, Dodds P, Park RF.

G3 (Bethesda). 2019 Oct 7;9(10):3263-3271. doi: 10.1534/g3.119.400450.

3.

Loss of AvrSr50 by somatic exchange in stem rust leads to virulence for Sr50 resistance in wheat.

Chen J, Upadhyaya NM, Ortiz D, Sperschneider J, Li F, Bouton C, Breen S, Dong C, Xu B, Zhang X, Mago R, Newell K, Xia X, Bernoux M, Taylor JM, Steffenson B, Jin Y, Zhang P, Kanyuka K, Figueroa M, Ellis JG, Park RF, Dodds PN.

Science. 2017 Dec 22;358(6370):1607-1610. doi: 10.1126/science.aao4810.

PMID:
29269475
4.

Genome analysis and avirulence gene cloning using a high-density RADseq linkage map of the flax rust fungus, Melampsora lini.

Anderson C, Khan MA, Catanzariti AM, Jack CA, Nemri A, Lawrence GJ, Upadhyaya NM, Hardham AR, Ellis JG, Dodds PN, Jones DA.

BMC Genomics. 2016 Aug 22;17:667. doi: 10.1186/s12864-016-3011-9.

5.

Changing the Game: Using Integrative Genomics to Probe Virulence Mechanisms of the Stem Rust Pathogen Puccinia graminis f. sp. tritici.

Figueroa M, Upadhyaya NM, Sperschneider J, Park RF, Szabo LJ, Steffenson B, Ellis JG, Dodds PN.

Front Plant Sci. 2016 Feb 24;7:205. doi: 10.3389/fpls.2016.00205. eCollection 2016. Review.

6.

The wheat durable, multipathogen resistance gene Lr34 confers partial blast resistance in rice.

Krattinger SG, Sucher J, Selter LL, Chauhan H, Zhou B, Tang M, Upadhyaya NM, Mieulet D, Guiderdoni E, Weidenbach D, Schaffrath U, Lagudah ES, Keller B.

Plant Biotechnol J. 2016 May;14(5):1261-8. doi: 10.1111/pbi.12491. Epub 2015 Oct 15.

7.

The different effects of starch synthase IIa mutations or variation on endosperm amylose content of barley, wheat and rice are determined by the distribution of starch synthase I and starch branching enzyme IIb between the starch granule and amyloplast stroma.

Luo J, Ahmed R, Kosar-Hashemi B, Larroque O, Butardo VM Jr, Tanner GJ, Colgrave ML, Upadhyaya NM, Tetlow IJ, Emes MJ, Millar A, Jobling SA, Morell MK, Li Z.

Theor Appl Genet. 2015 Jul;128(7):1407-19. doi: 10.1007/s00122-015-2515-z. Epub 2015 Apr 19.

PMID:
25893467
8.

Comparative genomics of Australian isolates of the wheat stem rust pathogen Puccinia graminis f. sp. tritici reveals extensive polymorphism in candidate effector genes.

Upadhyaya NM, Garnica DP, Karaoglu H, Sperschneider J, Nemri A, Xu B, Mago R, Cuomo CA, Rathjen JP, Park RF, Ellis JG, Dodds PN.

Front Plant Sci. 2015 Jan 8;5:759. doi: 10.3389/fpls.2014.00759. eCollection 2014.

9.

Diversifying selection in the wheat stem rust fungus acts predominantly on pathogen-associated gene families and reveals candidate effectors.

Sperschneider J, Ying H, Dodds PN, Gardiner DM, Upadhyaya NM, Singh KB, Manners JM, Taylor JM.

Front Plant Sci. 2014 Sep 1;5:372. doi: 10.3389/fpls.2014.00372. eCollection 2014.

10.

The ins and outs of rust haustoria.

Garnica DP, Nemri A, Upadhyaya NM, Rathjen JP, Dodds PN.

PLoS Pathog. 2014 Sep 11;10(9):e1004329. doi: 10.1371/journal.ppat.1004329. eCollection 2014 Sep. No abstract available.

11.

The genome sequence and effector complement of the flax rust pathogen Melampsora lini.

Nemri A, Saunders DG, Anderson C, Upadhyaya NM, Win J, Lawrence GJ, Jones DA, Kamoun S, Ellis JG, Dodds PN.

Front Plant Sci. 2014 Mar 24;5:98. doi: 10.3389/fpls.2014.00098. eCollection 2014.

12.

A bacterial type III secretion-based delivery system for functional assays of fungal effectors in cereals.

Upadhyaya NM, Ellis JG, Dodds PN.

Methods Mol Biol. 2014;1127:277-90. doi: 10.1007/978-1-62703-986-4_21.

PMID:
24643568
13.

Genomic analysis of Xanthomonas translucens pathogenic on wheat and barley reveals cross-kingdom gene transfer events and diverse protein delivery systems.

Gardiner DM, Upadhyaya NM, Stiller J, Ellis JG, Dodds PN, Kazan K, Manners JM.

PLoS One. 2014 Jan 9;9(1):e84995. doi: 10.1371/journal.pone.0084995. eCollection 2014.

14.

A bacterial type III secretion assay for delivery of fungal effector proteins into wheat.

Upadhyaya NM, Mago R, Staskawicz BJ, Ayliffe MA, Ellis JG, Dodds PN.

Mol Plant Microbe Interact. 2014 Mar;27(3):255-64. doi: 10.1094/MPMI-07-13-0187-FI.

15.

Strategies for Wheat Stripe Rust Pathogenicity Identified by Transcriptome Sequencing.

Garnica DP, Upadhyaya NM, Dodds PN, Rathjen JP.

PLoS One. 2013 Jun 26;8(6):e67150. doi: 10.1371/journal.pone.0067150. Print 2013.

16.

Transposon insertional mutagenesis in rice.

Upadhyaya NM, Zhu QH, Bhat RS.

Methods Mol Biol. 2011;678:147-77. doi: 10.1007/978-1-60761-682-5_12.

PMID:
20931379
17.

Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa).

Zhu QH, Upadhyaya NM, Gubler F, Helliwell CA.

BMC Plant Biol. 2009 Dec 17;9:149. doi: 10.1186/1471-2229-9-149.

18.

A bidirectional gene trap construct suitable for T-DNA and Ds-mediated insertional mutagenesis in rice (Oryza sativa L.).

Eamens AL, Blanchard CL, Dennis ES, Upadhyaya NM.

Plant Biotechnol J. 2004 Sep;2(5):367-80.

19.

Reciprocal control of flowering time by OsSOC1 in transgenic Arabidopsis and by FLC in transgenic rice.

Tadege M, Sheldon CC, Helliwell CA, Upadhyaya NM, Dennis ES, Peacock WJ.

Plant Biotechnol J. 2003 Sep;1(5):361-9.

20.

Functional characterization of the rice kaurene synthase-like gene family.

Xu M, Wilderman PR, Morrone D, Xu J, Roy A, Margis-Pinheiro M, Upadhyaya NM, Coates RM, Peters RJ.

Phytochemistry. 2007 Feb;68(3):312-26. Epub 2006 Dec 1.

PMID:
17141283
21.

Compact shoot and leafy head 1, a mutation affects leaf initiation and developmental transition in rice (Oryza sativa L).

Zhu QH, Dennis ES, Upadhyaya NM.

Plant Cell Rep. 2007 Apr;26(4):421-7. Epub 2006 Nov 17.

PMID:
17111113
22.

Transgene structures suggest that multiple mechanisms are involved in T-DNA integration in plants.

Zhu QH, Ramm K, Eamens AL, Dennis ES, Upadhyaya NM.

Plant Sci. 2006 Sep;171(3):308-22. doi: 10.1016/j.plantsci.2006.03.019. Epub 2006 Apr 24.

PMID:
22980200
23.

Dissociation (Ds) constructs, mapped Ds launch pads and a transiently-expressed transposase system suitable for localized insertional mutagenesis in rice.

Upadhyaya NM, Zhu QH, Zhou XR, Eamens AL, Hoque MS, Ramm K, Shivakkumar R, Smith KF, Pan ST, Li S, Peng K, Kim SJ, Dennis ES.

Theor Appl Genet. 2006 May;112(7):1326-41. Epub 2006 Feb 28.

PMID:
16505997
24.

Decreased accumulation of glutelin types in rice grains constitutively expressing a sunflower seed albumin gene.

Islam N, Upadhyaya NM, Campbell PM, Akhurst R, Hagan N, Higgins TJ.

Phytochemistry. 2005 Nov;66(21):2534-9. Epub 2005 Oct 19.

PMID:
16242165
25.

Isolation and characterization of a Ds-tagged rice (Oryza sativa L.) GA-responsive dwarf mutant defective in an early step of the gibberellin biosynthesis pathway.

Margis-Pinheiro M, Zhou XR, Zhu QH, Dennis ES, Upadhyaya NM.

Plant Cell Rep. 2005 Mar;23(12):819-33. Epub 2005 Jan 25.

PMID:
15668792
26.

The ANTHER INDEHISCENCE1 gene encoding a single MYB domain protein is involved in anther development in rice.

Zhu QH, Ramm K, Shivakkumar R, Dennis ES, Upadhyaya NM.

Plant Physiol. 2004 Jul;135(3):1514-25. Epub 2004 Jul 9.

27.

Protein extraction from mature rice leaves for two-dimensional gel electrophoresis and its application in proteome analysis.

Islam N, Lonsdale M, Upadhyaya NM, Higgins TJ, Hirano H, Akhurst R.

Proteomics. 2004 Jul;4(7):1903-8.

PMID:
15221747
28.
29.

Rice ragged stunt oryzavirus genome segment S4 could encode an RNA dependent RNA polymerase and a second protein of unknown function.

Upadhyaya NM, Ramm K, Gellatly JA, Li Z, Kositratana W, Waterhouse PM.

Arch Virol. 1998;143(9):1815-22.

PMID:
9787664
30.

Rice ragged stunt oryzavirus genome segments S7 and S10 encode non-structural proteins of M(r) 68,025 (Pns7) and M(r) 32,364 (Pns10).

Upadhyaya NM, Ramm K, Gellatly JA, Li Z, Kositratana W, Waterhouse PM.

Arch Virol. 1997;142(8):1719-26.

PMID:
9672632
31.

Genome segment 5 of rice ragged stunt virus encodes a virion protein.

Li Z, Upadhyaya NM, Kositratana W, Gibbs AJ, Waterhouse PM.

J Gen Virol. 1996 Dec;77 ( Pt 12):3155-60.

PMID:
9000111
32.
33.

Molecular analysis of rice ragged stunt oryzavirus segment 9 and sequence conservation among isolates from Thailand and India.

Upadhyaya NM, Yang M, Kositratana W, Ghosh A, Waterhouse PM.

Arch Virol. 1995;140(11):1945-56.

PMID:
7503693
34.

Isolation and characterization of Rhizobium (IC3342) genes that determine leaf curl induction in pigeon pea.

Upadhyaya NM, Scott KF, Tucker WT, Watson JM, Dart PJ.

Mol Plant Microbe Interact. 1992 Mar-Apr;5(2):129-43.

PMID:
1319772
35.
36.

Do rhizobia produce cytokinins?

Upadhyaya NM, Letham DS, Parker CW, Hocart CH, Dart PJ.

Biochem Int. 1991 May;24(1):123-30.

PMID:
1768251
37.

Evidence for Cytokinin Involvement in Rhizobium (IC3342)-Induced Leaf Curl Syndrome of Pigeonpea (Cajanus cajan Millsp.).

Upadhyaya NM, Parker CW, Letham DS, Scott KF, Dart PJ.

Plant Physiol. 1991 Apr;95(4):1019-25.

Supplemental Content

Loading ...
Support Center