Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 28

1.

Translesion synthesis DNA polymerase η exhibits a specific RNA extension activity and a transcription-associated function.

Gali VK, Balint E, Serbyn N, Frittmann O, Stutz F, Unk I.

Sci Rep. 2017 Oct 12;7(1):13055. doi: 10.1038/s41598-017-12915-1.

2.

Mutations at the Subunit Interface of Yeast Proliferating Cell Nuclear Antigen Reveal a Versatile Regulatory Domain.

Halmai M, Frittmann O, Szabo Z, Daraba A, Gali VK, Balint E, Unk I.

PLoS One. 2016 Aug 18;11(8):e0161307. doi: 10.1371/journal.pone.0161307. eCollection 2016.

3.

Synchronization of Saccharomyces cerevisiae Cells in G1 Phase of the Cell Cycle.

Unk I, Daraba A.

Bio Protoc. 2014 Oct 20;4(20). pii: e1273. doi: 10.21769/BioProtoc.1273.

4.

Measuring UV-induced Mutagenesis at the CAN1 Locus in Saccharomyces cerevisiae.

Unk I, Daraba A.

Bio Protoc. 2014 Oct 20;4(20). pii: e1272. doi: 10.21769/BioProtoc.1272.

5.

Def1 promotes the degradation of Pol3 for polymerase exchange to occur during DNA-damage--induced mutagenesis in Saccharomyces cerevisiae.

Daraba A, Gali VK, Halmai M, Haracska L, Unk I.

PLoS Biol. 2014 Jan;12(1):e1001771. doi: 10.1371/journal.pbio.1001771. Epub 2014 Jan 21.

6.

Role of yeast Rad5 and its human orthologs, HLTF and SHPRH in DNA damage tolerance.

Unk I, Hajdú I, Blastyák A, Haracska L.

DNA Repair (Amst). 2010 Mar 2;9(3):257-67. doi: 10.1016/j.dnarep.2009.12.013. Epub 2010 Jan 21. Review.

PMID:
20096653
7.

Role of double-stranded DNA translocase activity of human HLTF in replication of damaged DNA.

Blastyák A, Hajdú I, Unk I, Haracska L.

Mol Cell Biol. 2010 Feb;30(3):684-93. doi: 10.1128/MCB.00863-09. Epub 2009 Nov 30.

8.

Role of PCNA-dependent stimulation of 3'-phosphodiesterase and 3'-5' exonuclease activities of human Ape2 in repair of oxidative DNA damage.

Burkovics P, Hajdú I, Szukacsov V, Unk I, Haracska L.

Nucleic Acids Res. 2009 Jul;37(13):4247-55. doi: 10.1093/nar/gkp357. Epub 2009 May 13.

9.

Roles of PCNA-binding and ubiquitin-binding domains in human DNA polymerase eta in translesion DNA synthesis.

Acharya N, Yoon JH, Gali H, Unk I, Haracska L, Johnson RE, Hurwitz J, Prakash L, Prakash S.

Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17724-9. doi: 10.1073/pnas.0809844105. Epub 2008 Nov 10.

10.

Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination.

Unk I, Hajdú I, Fátyol K, Hurwitz J, Yoon JH, Prakash L, Prakash S, Haracska L.

Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3768-73. doi: 10.1073/pnas.0800563105. Epub 2008 Mar 3.

11.

Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression.

Blastyák A, Pintér L, Unk I, Prakash L, Prakash S, Haracska L.

Mol Cell. 2007 Oct 12;28(1):167-75.

12.

Human SHPRH is a ubiquitin ligase for Mms2-Ubc13-dependent polyubiquitylation of proliferating cell nuclear antigen.

Unk I, Hajdú I, Fátyol K, Szakál B, Blastyák A, Bermudez V, Hurwitz J, Prakash L, Prakash S, Haracska L.

Proc Natl Acad Sci U S A. 2006 Nov 28;103(48):18107-12. Epub 2006 Nov 15.

13.

Mms2-Ubc13-dependent and -independent roles of Rad5 ubiquitin ligase in postreplication repair and translesion DNA synthesis in Saccharomyces cerevisiae.

Gangavarapu V, Haracska L, Unk I, Johnson RE, Prakash S, Prakash L.

Mol Cell Biol. 2006 Oct;26(20):7783-90. Epub 2006 Aug 14.

14.

Human Ape2 protein has a 3'-5' exonuclease activity that acts preferentially on mismatched base pairs.

Burkovics P, Szukacsov V, Unk I, Haracska L.

Nucleic Acids Res. 2006 May 10;34(9):2508-15. Print 2006.

15.

Ubiquitylation of yeast proliferating cell nuclear antigen and its implications for translesion DNA synthesis.

Haracska L, Unk I, Prakash L, Prakash S.

Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6477-82. Epub 2006 Apr 12.

16.

Complex formation of yeast Rev1 and Rev7 proteins: a novel role for the polymerase-associated domain.

Acharya N, Haracska L, Johnson RE, Unk I, Prakash S, Prakash L.

Mol Cell Biol. 2005 Nov;25(21):9734-40.

17.

A single domain in human DNA polymerase iota mediates interaction with PCNA: implications for translesion DNA synthesis.

Haracska L, Acharya N, Unk I, Johnson RE, Hurwitz J, Prakash L, Prakash S.

Mol Cell Biol. 2005 Feb;25(3):1183-90.

18.

Stimulation of 3'-->5' exonuclease and 3'-phosphodiesterase activities of yeast apn2 by proliferating cell nuclear antigen.

Unk I, Haracska L, Gomes XV, Burgers PM, Prakash L, Prakash S.

Mol Cell Biol. 2002 Sep;22(18):6480-6.

19.

Stimulation of DNA synthesis activity of human DNA polymerase kappa by PCNA.

Haracska L, Unk I, Johnson RE, Phillips BB, Hurwitz J, Prakash L, Prakash S.

Mol Cell Biol. 2002 Feb;22(3):784-91.

20.

Targeting of human DNA polymerase iota to the replication machinery via interaction with PCNA.

Haracska L, Johnson RE, Unk I, Phillips BB, Hurwitz J, Prakash L, Prakash S.

Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14256-61. Epub 2001 Nov 27.

21.

Physical and functional interactions of human DNA polymerase eta with PCNA.

Haracska L, Johnson RE, Unk I, Phillips B, Hurwitz J, Prakash L, Prakash S.

Mol Cell Biol. 2001 Nov;21(21):7199-206.

22.

Interaction with PCNA is essential for yeast DNA polymerase eta function.

Haracska L, Kondratick CM, Unk I, Prakash S, Prakash L.

Mol Cell. 2001 Aug;8(2):407-15.

23.

Roles of yeast DNA polymerases delta and zeta and of Rev1 in the bypass of abasic sites.

Haracska L, Unk I, Johnson RE, Johansson E, Burgers PM, Prakash S, Prakash L.

Genes Dev. 2001 Apr 15;15(8):945-54.

25.

Apurinic endonuclease activity of yeast Apn2 protein.

Unk I, Haracska L, Johnson RE, Prakash S, Prakash L.

J Biol Chem. 2000 Jul 21;275(29):22427-34.

26.
27.

A downstream regulatory element activates the bovine leukemia virus promoter.

Kiss-Tóth E, Unk I.

Biochem Biophys Res Commun. 1994 Aug 15;202(3):1553-61.

PMID:
8060339
28.

Member of the CREB/ATF protein family, but not CREB alpha plays an active role in BLV tax trans activation in vivo.

Kiss-Toth E, Paca-uccaralertkun S, Unk I, Boros I.

Nucleic Acids Res. 1993 Aug 11;21(16):3677-82.

Supplemental Content

Support Center