Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 21

1.

[3D Genomics].

Razin SV, Ulianov SV, Gavrilov AA.

Mol Biol (Mosk). 2019 Nov-Dec;53(6):911-923. doi: 10.1134/S0026898419060156. Review. Russian.

PMID:
31876272
2.

C-TALE, a new cost-effective method for targeted enrichment of Hi-C/3C-seq libraries.

Golov AK, Ulianov SV, Luzhin AV, Kalabusheva EP, Kantidze OL, Flyamer IM, Razin SV, Gavrilov AA.

Methods. 2020 Jan 1;170:48-60. doi: 10.1016/j.ymeth.2019.06.022. Epub 2019 Jun 26.

PMID:
31252062
3.

CRISPR/Cas9-generated mouse model of Duchenne muscular dystrophy recapitulating a newly identified large 430 kb deletion in the human DMD gene.

Egorova TV, Zotova ED, Reshetov DA, Polikarpova AV, Vassilieva SG, Vlodavets DV, Gavrilov AA, Ulianov SV, Buchman VL, Deykin AV.

Dis Model Mech. 2019 Apr 25;12(4). pii: dmm037655. doi: 10.1242/dmm.037655.

4.

Nuclear lamina integrity is required for proper spatial organization of chromatin in Drosophila.

Ulianov SV, Doronin SA, Khrameeva EE, Kos PI, Luzhin AV, Starikov SS, Galitsyna AA, Nenasheva VV, Ilyin AA, Flyamer IM, Mikhaleva EA, Logacheva MD, Gelfand MS, Chertovich AV, Gavrilov AA, Razin SV, Shevelyov YY.

Nat Commun. 2019 Mar 12;10(1):1176. doi: 10.1038/s41467-019-09185-y.

5.

The Nuclear Lamina as an Organizer of Chromosome Architecture.

Shevelyov YY, Ulianov SV.

Cells. 2019 Feb 8;8(2). pii: E136. doi: 10.3390/cells8020136. Review.

6.

Quantitative differences in TAD border strength underly the TAD hierarchy in Drosophila chromosomes.

Luzhin AV, Flyamer IM, Khrameeva EE, Ulianov SV, Razin SV, Gavrilov AA.

J Cell Biochem. 2019 Mar;120(3):4494-4503. doi: 10.1002/jcb.27737. Epub 2018 Sep 27.

PMID:
30260021
7.

Genetic and Epigenetic Mechanisms of β-Globin Gene Switching.

Iarovaia OV, Kovina AP, Petrova NV, Razin SV, Ioudinkova ES, Vassetzky YS, Ulianov SV.

Biochemistry (Mosc). 2018 Apr;83(4):381-392. doi: 10.1134/S0006297918040090. Review.

8.

Role of Nuclear Lamina in Gene Repression and Maintenance of Chromosome Architecture in the Nucleus.

Shevelyov YY, Ulianov SV.

Biochemistry (Mosc). 2018 Apr;83(4):359-369. doi: 10.1134/S0006297918040077. Review.

9.

Gene functioning and storage within a folded genome.

Razin SV, Ulianov SV.

Cell Mol Biol Lett. 2017 Aug 29;22:18. doi: 10.1186/s11658-017-0050-4. eCollection 2017. Review.

10.

Single-cell Hi-C bridges microscopy and genome-wide sequencing approaches to study 3D chromatin organization.

Ulianov SV, Tachibana-Konwalski K, Razin SV.

Bioessays. 2017 Oct;39(10). doi: 10.1002/bies.201700104. Epub 2017 Aug 9. Review.

PMID:
28792605
11.

Activation of the alpha-globin gene expression correlates with dramatic upregulation of nearby non-globin genes and changes in local and large-scale chromatin spatial structure.

Ulianov SV, Galitsyna AA, Flyamer IM, Golov AK, Khrameeva EE, Imakaev MV, Abdennur NA, Gelfand MS, Gavrilov AA, Razin SV.

Epigenetics Chromatin. 2017 Jul 11;10(1):35. doi: 10.1186/s13072-017-0142-4.

12.

Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition.

Flyamer IM, Gassler J, Imakaev M, Brandão HB, Ulianov SV, Abdennur N, Razin SV, Mirny LA, Tachibana-Konwalski K.

Nature. 2017 Apr 6;544(7648):110-114. doi: 10.1038/nature21711. Epub 2017 Mar 29.

13.

Evolution of the Genome 3D Organization: Comparison of Fused and Segregated Globin Gene Clusters.

Kovina AP, Petrova NV, Gushchanskaya ES, Dolgushin KV, Gerasimov ES, Galitsyna AA, Penin AA, Flyamer IM, Ioudinkova ES, Gavrilov AA, Vassetzky YS, Ulianov SV, Iarovaia OV, Razin SV.

Mol Biol Evol. 2017 Jun 1;34(6):1492-1504. doi: 10.1093/molbev/msx100.

PMID:
28333290
14.

Unraveling the mechanisms of chromatin fibril packaging.

Gavrilov AA, Shevelyov YY, Ulianov SV, Khrameeva EE, Kos P, Chertovich A, Razin SV.

Nucleus. 2016 May 3;7(3):319-24. doi: 10.1080/19491034.2016.1190896.

15.

Topologically-associating domains: gene warehouses adapted to serve transcriptional regulation.

Razin SV, Gavrilov AA, Vassetzky YS, Ulianov SV.

Transcription. 2016 May 26;7(3):84-90. doi: 10.1080/21541264.2016.1181489. Epub 2016 Apr 25. Review.

16.

Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains.

Ulianov SV, Khrameeva EE, Gavrilov AA, Flyamer IM, Kos P, Mikhaleva EA, Penin AA, Logacheva MD, Imakaev MV, Chertovich A, Gelfand MS, Shevelyov YY, Razin SV.

Genome Res. 2016 Jan;26(1):70-84. doi: 10.1101/gr.196006.115. Epub 2015 Oct 30.

17.

Nuclear compartments, genome folding, and enhancer-promoter communication.

Ulianov SV, Gavrilov AA, Razin SV.

Int Rev Cell Mol Biol. 2015;315:183-244. doi: 10.1016/bs.ircmb.2014.11.004. Epub 2015 Feb 9. Review.

PMID:
25708464
18.

Domains of α- and β-globin genes in the context of the structural-functional organization of the eukaryotic genome.

Razin SV, Ulianov SV, Ioudinkova ES, Gushchanskaya ES, Gavrilov AA, Iarovaia OV.

Biochemistry (Mosc). 2012 Dec;77(13):1409-23. doi: 10.1134/S0006297912130019. Review.

19.

Distant activation of transcription: mechanisms of enhancer action.

Kulaeva OI, Nizovtseva EV, Polikanov YS, Ulianov SV, Studitsky VM.

Mol Cell Biol. 2012 Dec;32(24):4892-7. doi: 10.1128/MCB.01127-12. Epub 2012 Oct 8. Review.

20.

Spatial organization of the chicken beta-globin gene domain in erythroid cells of embryonic and adult lineages.

Ulianov SV, Gavrilov AA, Razin SV.

Epigenetics Chromatin. 2012 Sep 7;5(1):16. doi: 10.1186/1756-8935-5-16.

21.

The inactivation of the π gene in chicken erythroblasts of adult lineage is not mediated by packaging of the embryonic part of the α-globin gene domain into a repressive heterochromatin-like structure.

Ioudinkova ES, Ulianov SV, Bunina D, Iarovaia OV, Gavrilov AA, Razin SV.

Epigenetics. 2011 Dec;6(12):1481-8. doi: 10.4161/epi.6.12.18215.

PMID:
22139578

Supplemental Content

Loading ...
Support Center