Send to

Choose Destination
Mol Syst Biol. 2017 Apr 24;13(4):926. doi: 10.15252/msb.20167456.

A photoconversion model for full spectral programming and multiplexing of optogenetic systems.

Author information

Graduate Program in Applied Physics, Rice University, Houston, TX, USA.
Department of Bioengineering, Rice University, Houston, TX, USA.
Department of Bioengineering, Rice University, Houston, TX, USA
Department of Biosciences, Rice University, Houston, TX, USA.


Optogenetics combines externally applied light signals and genetically engineered photoreceptors to control cellular processes with unmatched precision. Here, we develop a mathematical model of wavelength- and intensity-dependent photoconversion, signaling, and output gene expression for our two previously engineered light-sensing Escherichia coli two-component systems. To parameterize the model, we develop a simple set of spectral and dynamical calibration experiments using our recent open-source "Light Plate Apparatus" device. In principle, the parameterized model should predict the gene expression response to any time-varying signal from any mixture of light sources with known spectra. We validate this capability experimentally using a suite of challenging light sources and signals very different from those used during the parameterization process. Furthermore, we use the model to compensate for significant spectral cross-reactivity inherent to the two sensors in order to develop a new method for programming two simultaneous and independent gene expression signals within the same cell. Our optogenetic multiplexing method will enable powerful new interrogations of how metabolic, signaling, and decision-making pathways integrate multiple input signals.


optogenetics; predictive modeling; spectral multiplexing; synthetic biology; two‐component systems

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center