Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 29

1.

Structure-function correlations of two highly conserved motifs in Saccharomyces cerevisiae squalene epoxidase.

Ruckenstuhl C, Poschenel A, Possert R, Baral PK, Gruber K, Turnowsky F.

Antimicrob Agents Chemother. 2008 Apr;52(4):1496-9. doi: 10.1128/AAC.01282-07. Epub 2008 Jan 22.

2.

Characterization of squalene epoxidase of Saccharomyces cerevisiae by applying terbinafine-sensitive variants.

Ruckenstuhl C, Lang S, Poschenel A, Eidenberger A, Baral PK, Kohút P, Hapala I, Gruber K, Turnowsky F.

Antimicrob Agents Chemother. 2007 Jan;51(1):275-84. Epub 2006 Oct 16.

3.
4.

Characterizing sterol defect suppressors uncovers a novel transcriptional signaling pathway regulating zymosterol biosynthesis.

Germann M, Gallo C, Donahue T, Shirzadi R, Stukey J, Lang S, Ruckenstuhl C, Oliaro-Bosso S, McDonough V, Turnowsky F, Balliano G, Nickels JT Jr.

J Biol Chem. 2005 Oct 28;280(43):35904-13. Epub 2005 Aug 24.

5.

Targeting of proteins involved in sterol biosynthesis to lipid particles of the yeast Saccharomyces cerevisiae.

Müllner H, Zweytick D, Leber R, Turnowsky F, Daum G.

Biochim Biophys Acta. 2004 May 27;1663(1-2):9-13.

6.

Molecular mechanism of terbinafine resistance in Saccharomyces cerevisiae.

Leber R, Fuchsbichler S, Klobucníková V, Schweighofer N, Pitters E, Wohlfarter K, Lederer M, Landl K, Ruckenstuhl C, Hapala I, Turnowsky F.

Antimicrob Agents Chemother. 2003 Dec;47(12):3890-900.

7.

Terbinafine resistance in a pleiotropic yeast mutant is caused by a single point mutation in the ERG1 gene.

Klobucníková V, Kohút P, Leber R, Fuchsbichler S, Schweighofer N, Turnowsky F, Hapala I.

Biochem Biophys Res Commun. 2003 Sep 26;309(3):666-71.

PMID:
12963042
8.

A novel sequence element is involved in the transcriptional regulation of expression of the ERG1 (squalene epoxidase) gene in Saccharomyces cerevisiae.

Leber R, Zenz R, Schröttner K, Fuchsbichler S, Pühringer B, Turnowsky F.

Eur J Biochem. 2001 Feb;268(4):914-24.

9.

Dual localization of squalene epoxidase, Erg1p, in yeast reflects a relationship between the endoplasmic reticulum and lipid particles.

Leber R, Landl K, Zinser E, Ahorn H, Spök A, Kohlwein SD, Turnowsky F, Daum G.

Mol Biol Cell. 1998 Feb;9(2):375-86.

11.
12.

Crystallization and preliminary X-ray diffraction studies of the enoyl-ACP reductase from Escherichia coli.

Wagner UG, Bergler H, Fuchsbichler S, Turnowsky F, Högenauer G, Kratky C.

J Mol Biol. 1994 Oct 14;243(1):126-7.

PMID:
7932735
13.

Inhibition of lipid biosynthesis induces the expression of the pspA gene.

Bergler H, Abraham D, Aschauer H, Turnowsky F.

Microbiology. 1994 Aug;140 ( Pt 8):1937-44.

PMID:
7921245
14.

Protein EnvM is the NADH-dependent enoyl-ACP reductase (FabI) of Escherichia coli.

Bergler H, Wallner P, Ebeling A, Leitinger B, Fuchsbichler S, Aschauer H, Kollenz G, Högenauer G, Turnowsky F.

J Biol Chem. 1994 Feb 25;269(8):5493-6.

15.

Sequences of the envM gene and of two mutated alleles in Escherichia coli.

Bergler H, Högenauer G, Turnowsky F.

J Gen Microbiol. 1992 Oct;138(10):2093-100.

PMID:
1364817
16.

The gene encoding squalene epoxidase from Saccharomyces cerevisiae: cloning and characterization.

Jandrositz A, Turnowsky F, Högenauer G.

Gene. 1991 Oct 30;107(1):155-60.

PMID:
1743514
17.

envM genes of Salmonella typhimurium and Escherichia coli.

Turnowsky F, Fuchs K, Jeschek C, Högenauer G.

J Bacteriol. 1989 Dec;171(12):6555-65.

18.

Effect of a diazaborine derivative (Sa 84.474) on the virulence of Escherichia coli.

Lam C, Turnowsky F, Högenauer G, Schütze E.

J Antimicrob Chemother. 1987 Jul;20(1):37-45.

PMID:
3305463
19.

Syntheses and biological activities of new penem derivatives with side chains derived from 4-hydroxyproline.

Emmer G, Kneussel P, Hildebrandt J, Turnowsky F, Haselberger A, Wenzel A, Stütz P.

J Antibiot (Tokyo). 1985 Oct;38(10):1371-86.

20.

Preparation and antibacterial activities of new 1,2,3-diazaborine derivatives and analogues.

Grassberger MA, Turnowsky F, Hildebrandt J.

J Med Chem. 1984 Aug;27(8):947-53.

PMID:
6379179
21.

Synthesis and beta-lactamase inhibitory activities of some clavulanic acid analogues.

Mak CP, Prasad K, Turnowsky F.

J Antibiot (Tokyo). 1983 Apr;36(4):398-406.

22.

[Heterocyclics fused to pyrazine-1,4-dioxide. 3. Synthesis and antibacterial effect of substituted pteridine--5,8-dioxides].

Binder D, Noe CR, Prager BC, Turnowsky F.

Arzneimittelforschung. 1983;33(6):803-5. German.

PMID:
6684431
23.

Tiamulin resistance mutations in Escherichia coli.

Böck A, Turnowsky F, Högenauer G.

J Bacteriol. 1982 Sep;151(3):1253-60.

24.

[Pyrazine-1,4-dioxides fused to heterocycles / 2nd comm.: Synthesis and antibacterial activity of substituted pyrido[2,3-b]pyrazine-1,4-dioxides (author's transl)].

Binder D, Georgopoulos A, Noe CR, Nussbaumer J, Prager BC, Turnowsky F.

Arzneimittelforschung. 1982;32(1):10-4. German.

PMID:
7199336
25.

Total synthesis of rac. negamycin and of negamycin analogs.

Streicher W, Reinshagen H, Turnowsky F.

J Antibiot (Tokyo). 1978 Jul;31(7):725-8. No abstract available.

26.

Colicin E 3, an inactivating agent of the ribosomal A-site.

Turnowsky F, Högenauer G.

Biochem Biophys Res Commun. 1973 Dec 19;55(4):1246-54. No abstract available.

PMID:
4589304
27.

In vitro inactivation of ascites ribosomes by colicin E 3.

Turnowsky F, Drews J, Eich F, Högenauer G.

Biochem Biophys Res Commun. 1973 May 1;52(1):327-34. No abstract available.

PMID:
4736471
28.

The effects of streptomycin and tetracycline on codon-anticodon interactions.

Högenauer G, Turnowsky F.

FEBS Lett. 1972 Oct 1;26(1):185-8. No abstract available.

29.

Codon-anticodon interaction of methionine specific tRNAs.

Högenauer G, Turnowsky F, Unger FM.

Biochem Biophys Res Commun. 1972 Mar 24;46(6):2100-6. No abstract available.

PMID:
4553156

Supplemental Content

Loading ...
Support Center