Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 181

1.

The molecular lifecycle of amyloid - Mechanism of assembly, mesoscopic organisation, polymorphism, suprastructures, and biological consequences.

Lutter L, Serpell CJ, Tuite MF, Xue WF.

Biochim Biophys Acta Proteins Proteom. 2019 Nov;1867(11):140257. doi: 10.1016/j.bbapap.2019.07.010. Epub 2019 Jul 25. Review.

PMID:
31352057
2.

Quantitative Analyses of the Yeast Oxidative Protein Folding Pathway In Vitro and In Vivo.

Beal DM, Bastow EL, Staniforth GL, von der Haar T, Freedman RB, Tuite MF.

Antioxid Redox Signal. 2019 Aug 1;31(4):261-274. doi: 10.1089/ars.2018.7615. Epub 2019 Apr 25.

3.

A viral expression factor behaves as a prion.

Nan H, Chen H, Tuite MF, Xu X.

Nat Commun. 2019 Jan 21;10(1):359. doi: 10.1038/s41467-018-08180-z.

4.

The physical dimensions of amyloid aggregates control their infective potential as prion particles.

Marchante R, Beal DM, Koloteva-Levine N, Purton TJ, Tuite MF, Xue WF.

Elife. 2017 Sep 7;6. pii: e27109. doi: 10.7554/eLife.27109.

5.

Human TorsinA can function in the yeast cytosol as a molecular chaperone.

Adam I, Jossé L, Tuite MF.

Biochem J. 2017 Oct 5;474(20):3439-3454. doi: 10.1042/BCJ20170395.

6.

Disrupting the cortical actin cytoskeleton points to two distinct mechanisms of yeast [PSI+] prion formation.

Speldewinde SH, Doronina VA, Tuite MF, Grant CM.

PLoS Genet. 2017 Apr 3;13(4):e1006708. doi: 10.1371/journal.pgen.1006708. eCollection 2017 Apr.

7.

The copper transport-associated protein Ctr4 can form prion-like epigenetic determinants in Schizosaccharomyces pombe.

Sideri T, Yashiroda Y, Ellis DA, Rodríguez-López M, Yoshida M, Tuite MF, Bähler J.

Microb Cell. 2017 Jan;4(1):16-28. doi: 10.15698/mic2017.01.552.

8.

The control of translational accuracy is a determinant of healthy ageing in yeast.

von der Haar T, Leadsham JE, Sauvadet A, Tarrant D, Adam IS, Saromi K, Laun P, Rinnerthaler M, Breitenbach-Koller H, Breitenbach M, Tuite MF, Gourlay CW.

Open Biol. 2017 Jan;7(1). pii: 160291. doi: 10.1098/rsob.160291.

9.

Over-expression of the molecular chaperone Hsp104 in Saccharomyces cerevisiae results in the malpartition of [PSI+ ] propagons.

Ness F, Cox BS, Wongwigkarn J, Naeimi WR, Tuite MF.

Mol Microbiol. 2017 Apr;104(1):125-143. doi: 10.1111/mmi.13617. Epub 2017 Feb 21.

10.

An acid tale of prion formation.

Tuite MF.

Elife. 2016 Nov 29;5. pii: e22256. doi: 10.7554/eLife.22256.

11.

New links between SOD1 and metabolic dysfunction from a yeast model of amyotrophic lateral sclerosis.

Bastow EL, Peswani AR, Tarrant DS, Pentland DR, Chen X, Morgan A, Staniforth GL, Tullet JM, Rowe ML, Howard MJ, Tuite MF, Gourlay CW.

J Cell Sci. 2016 Nov 1;129(21):4118-4129. Epub 2016 Sep 21.

12.

Remembering the Past: A New Form of Protein-Based Inheritance.

Tuite MF.

Cell. 2016 Oct 6;167(2):302-303. doi: 10.1016/j.cell.2016.09.036. Review.

13.

[PSI(+)] turns 50.

Tuite MF, Staniforth GL, Cox BS.

Prion. 2015;9(5):318-32. doi: 10.1080/19336896.2015.1111508.

14.

Yeast prions: Paramutation at the protein level?

Tuite MF.

Semin Cell Dev Biol. 2015 Aug;44:51-61. doi: 10.1016/j.semcdb.2015.08.016. Epub 2015 Sep 16. Review.

PMID:
26386407
15.

Oxidative stress conditions increase the frequency of de novo formation of the yeast [PSI+] prion.

Doronina VA, Staniforth GL, Speldewinde SH, Tuite MF, Grant CM.

Mol Microbiol. 2015 Apr;96(1):163-74. doi: 10.1111/mmi.12930. Epub 2015 Feb 11.

16.

Monoculture breeds poor social skills.

Staniforth GL, Tuite MF.

Cell. 2014 Aug 28;158(5):975-977. doi: 10.1016/j.cell.2014.08.004.

17.

Dynamic prions revealed by magic.

Tuite MF, Howard MJ, Xue WF.

Chem Biol. 2014 Feb 20;21(2):172-3. doi: 10.1016/j.chembiol.2014.02.001.

18.

Control and regulation of mRNA translation.

Mead EJ, Masterton RJ, von der Haar T, Tuite MF, Smales CM.

Biochem Soc Trans. 2014 Feb;42(1):151-4. doi: 10.1042/BST20130259.

PMID:
24450643
19.

Translation elongation can control translation initiation on eukaryotic mRNAs.

Chu D, Kazana E, Bellanger N, Singh T, Tuite MF, von der Haar T.

EMBO J. 2014 Jan 7;33(1):21-34. doi: 10.1002/embj.201385651. Epub 2013 Dec 19.

20.

Specialized yeast ribosomes: a customized tool for selective mRNA translation.

Bauer JW, Brandl C, Haubenreisser O, Wimmer B, Weber M, Karl T, Klausegger A, Breitenbach M, Hintner H, von der Haar T, Tuite MF, Breitenbach-Koller L.

PLoS One. 2013 Jul 8;8(7):e67609. doi: 10.1371/journal.pone.0067609. Print 2013.

21.

The natural history of yeast prions.

Tuite MF.

Adv Appl Microbiol. 2013;84:85-137. doi: 10.1016/B978-0-12-407673-0.00003-5. Review.

PMID:
23763759
22.

Structural definition is important for the propagation of the yeast [PSI+] prion.

Marchante R, Rowe M, Zenthon J, Howard MJ, Tuite MF.

Mol Cell. 2013 Jun 6;50(5):675-85. doi: 10.1016/j.molcel.2013.05.010.

23.

Fungal prions.

Staniforth GL, Tuite MF.

Prog Mol Biol Transl Sci. 2012;107:417-56. doi: 10.1016/B978-0-12-385883-2.00007-2. Review.

PMID:
22482457
24.

Probing the role of structural features of mouse PrP in yeast by expression as Sup35-PrP fusions.

Jossé L, Marchante R, Zenthon J, von der Haar T, Tuite MF.

Prion. 2012 Jul 1;6(3):201-10. doi: 10.4161/pri.19214. Epub 2012 Jul 1. Review.

25.

Engineering the chaperone network of CHO cells for optimal recombinant protein production and authenticity.

Jossé L, Smales CM, Tuite MF.

Methods Mol Biol. 2012;824:595-608. doi: 10.1007/978-1-61779-433-9_32.

PMID:
22160922
26.

Using yeast models to probe the molecular basis of amyotrophic lateral sclerosis.

Bastow EL, Gourlay CW, Tuite MF.

Biochem Soc Trans. 2011 Oct;39(5):1482-7. doi: 10.1042/BST0391482. Review.

PMID:
21936838
27.

Methionine oxidation of Sup35 protein induces formation of the [PSI+] prion in a yeast peroxiredoxin mutant.

Sideri TC, Koloteva-Levine N, Tuite MF, Grant CM.

J Biol Chem. 2011 Nov 11;286(45):38924-31. doi: 10.1074/jbc.M111.272419. Epub 2011 Aug 9.

28.

Fungal prions: structure, function and propagation.

Tuite MF, Marchante R, Kushnirov V.

Top Curr Chem. 2011;305:257-98. doi: 10.1007/128_2011_172. Review.

PMID:
21717344
29.

Molecular basis for transmission barrier and interference between closely related prion proteins in yeast.

Afanasieva EG, Kushnirov VV, Tuite MF, Ter-Avanesyan MD.

J Biol Chem. 2011 May 6;286(18):15773-80. doi: 10.1074/jbc.M110.183889. Epub 2011 Mar 15.

30.

The prion hypothesis: from biological anomaly to basic regulatory mechanism.

Tuite MF, Serio TR.

Nat Rev Mol Cell Biol. 2010 Dec;11(12):823-33. doi: 10.1038/nrm3007. Epub 2010 Nov 17. Review.

31.

Decoding accuracy in eRF1 mutants and its correlation with pleiotropic quantitative traits in yeast.

Merritt GH, Naemi WR, Mugnier P, Webb HM, Tuite MF, von der Haar T.

Nucleic Acids Res. 2010 Sep;38(16):5479-92. doi: 10.1093/nar/gkq338. Epub 2010 May 5.

32.

Ribosome-associated peroxiredoxins suppress oxidative stress-induced de novo formation of the [PSI+] prion in yeast.

Sideri TC, Stojanovski K, Tuite MF, Grant CM.

Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6394-9. doi: 10.1073/pnas.1000347107. Epub 2010 Mar 22.

33.
34.

Transient expression of human TorsinA enhances secretion of two functionally distinct proteins in cultured Chinese hamster ovary (CHO) cells.

Jossé L, Smales CM, Tuite MF.

Biotechnol Bioeng. 2010 Feb 15;105(3):556-66. doi: 10.1002/bit.22572.

PMID:
19845036
35.

The number and transmission of [PSI] prion seeds (Propagons) in the yeast Saccharomyces cerevisiae.

Byrne LJ, Cole DJ, Cox BS, Ridout MS, Morgan BJ, Tuite MF.

PLoS One. 2009;4(3):e4670. doi: 10.1371/journal.pone.0004670. Epub 2009 Mar 5.

36.

Prions remodel gene expression in yeast.

Tuite MF, Cox BS.

Nat Cell Biol. 2009 Mar;11(3):241-3. doi: 10.1038/ncb0309-241.

PMID:
19255570
37.

tRNA and protein methylase complexes mediate zymocin toxicity in yeast.

Studte P, Zink S, Jablonowski D, Bär C, von der Haar T, Tuite MF, Schaffrath R.

Mol Microbiol. 2008 Sep;69(5):1266-77. doi: 10.1111/j.1365-2958.2008.06358.x. Epub 2008 Jul 24.

38.

Cell division is essential for elimination of the yeast [PSI+] prion by guanidine hydrochloride.

Byrne LJ, Cox BS, Cole DJ, Ridout MS, Morgan BJ, Tuite MF.

Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11688-93. Epub 2007 Jul 2.

39.

Prion stability.

Cox BS, Byrne LJ, Tuite MF.

Prion. 2007 Jul-Sep;1(3):170-8. Epub 2007 Jul 6. Review.

40.

Development of a novel yeast cell-based system for studying the aggregation of Alzheimer's disease-associated Abeta peptides in vivo.

von der Haar T, Jossé L, Wright P, Zenthon J, Tuite MF.

Neurodegener Dis. 2007;4(2-3):136-47.

PMID:
17596708
41.

Approximations for expected generation number.

Cole DJ, Ridout MS, Morgan BJ, Byrne LJ, Tuite MF.

Biometrics. 2007 Dec;63(4):1023-30. Epub 2007 Apr 9.

PMID:
17425634
42.
43.

The genetic control of the formation and propagation of the [PSI+] prion of yeast.

Tuite MF, Cox BS.

Prion. 2007 Apr-Jun;1(2):101-9. Epub 2007 Apr 28. Review.

44.

Regulated translational bypass of stop codons in yeast.

von der Haar T, Tuite MF.

Trends Microbiol. 2007 Feb;15(2):78-86. Epub 2006 Dec 21. Review.

PMID:
17187982
45.

New approximations to the Malthusian parameter.

Ridout MS, Cole DJ, Morgan BJ, Byrne LJ, Tuite MF.

Biometrics. 2006 Dec;62(4):1216-23.

PMID:
17156297
46.

Zeocin resistance as a dominant selective marker for transformation and targeted gene deletions in Candida glabrata.

Alderton AJ, Burr I, Mühlschlegel FA, Tuite MF.

Mycoses. 2006 Nov;49(6):445-51.

PMID:
17022759
47.

The [PSI+] prion of yeast: a problem of inheritance.

Tuite MF, Cox BS.

Methods. 2006 May;39(1):9-22.

PMID:
16757178
48.
49.

Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence.

Klengel T, Liang WJ, Chaloupka J, Ruoff C, Schröppel K, Naglik JR, Eckert SE, Mogensen EG, Haynes K, Tuite MF, Levin LR, Buck J, Mühlschlegel FA.

Curr Biol. 2005 Nov 22;15(22):2021-6. Erratum in: Curr Biol. 2005 Dec 6;15(23):2177.

50.

Preventing illicit liaisons in Poland.

Lund PA, Tuite MF.

EMBO Rep. 2005 Dec;6(12):1126-30. No abstract available.

Supplemental Content

Loading ...
Support Center