Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 25

1.

Different roles of distinct serotonergic pathways in anxiety-like behavior, antidepressant-like, and anti-impulsive effects.

Ohmura Y, Tsutsui-Kimura I, Sasamori H, Nebuka M, Nishitani N, Tanaka KF, Yamanaka A, Yoshioka M.

Neuropharmacology. 2019 Jul 9:107703. doi: 10.1016/j.neuropharm.2019.107703. [Epub ahead of print]

PMID:
31299228
2.

AppNL-G-F/NL-G-F mice overall do not show impaired motivation, but cored amyloid plaques in the striatum are inversely correlated with motivation.

Hamaguchi T, Tsutsui-Kimura I, Mimura M, Saito T, Saido TC, Tanaka KF.

Neurochem Int. 2019 May 16;129:104470. doi: 10.1016/j.neuint.2019.104470. [Epub ahead of print]

PMID:
31102607
3.

5-HT3 antagonists decrease discounting rate without affecting sensitivity to reward magnitude in the delay discounting task in mice.

Mori M, Tsutsui-Kimura I, Mimura M, Tanaka KF.

Psychopharmacology (Berl). 2018 Sep;235(9):2619-2629. doi: 10.1007/s00213-018-4954-0. Epub 2018 Jun 28.

PMID:
29955899
4.

Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics.

Chen S, Weitemier AZ, Zeng X, He L, Wang X, Tao Y, Huang AJY, Hashimotodani Y, Kano M, Iwasaki H, Parajuli LK, Okabe S, Teh DBL, All AH, Tsutsui-Kimura I, Tanaka KF, Liu X, McHugh TJ.

Science. 2018 Feb 9;359(6376):679-684. doi: 10.1126/science.aaq1144.

PMID:
29439241
5.

Distinct Roles of Ventromedial versus Ventrolateral Striatal Medium Spiny Neurons in Reward-Oriented Behavior.

Tsutsui-Kimura I, Natsubori A, Mori M, Kobayashi K, Drew MR, de Kerchove d'Exaerde A, Mimura M, Tanaka KF.

Curr Biol. 2017 Oct 9;27(19):3042-3048.e4. doi: 10.1016/j.cub.2017.08.061. Epub 2017 Sep 28.

6.

Striatonigral direct pathway activation is sufficient to induce repetitive behaviors.

Bouchekioua Y, Tsutsui-Kimura I, Sano H, Koizumi M, Tanaka KF, Yoshida K, Kosaki Y, Watanabe S, Mimura M.

Neurosci Res. 2018 Jul;132:53-57. doi: 10.1016/j.neures.2017.09.007. Epub 2017 Sep 20.

PMID:
28939413
7.

Yokukansankachimpihange increased body weight but not food-incentive motivation in wild-type mice.

Hamaguchi T, Tsutsui-Kimura I, F Tanaka K, Mimura M.

Nagoya J Med Sci. 2017 Aug;79(3):351-362. doi: 10.18999/nagjms.79.3.351.

8.

Milnacipran affects mouse impulsive, aggressive, and depressive-like behaviors in a distinct dose-dependent manner.

Tsutsui-Kimura I, Ohmura Y, Yoshida T, Yoshioka M.

J Pharmacol Sci. 2017 Jul;134(3):181-189. doi: 10.1016/j.jphs.2017.06.004. Epub 2017 Jun 27.

9.

A New Paradigm for Evaluating Avoidance/Escape Motivation.

Tsutsui-Kimura I, Bouchekioua Y, Mimura M, Tanaka KF.

Int J Neuropsychopharmacol. 2017 Jul 1;20(7):593-601. doi: 10.1093/ijnp/pyx031.

10.

The data set describing cognitive performance after varenicline administration in a 3-choice serial reaction time task in rats.

Ohmura Y, Sasamori H, Tsutsui-Kimura I, Izumi T, Yoshida T, Yoshioka M.

Data Brief. 2017 Mar 3;11:507-509. doi: 10.1016/j.dib.2017.02.050. eCollection 2017 Apr.

11.

Ventrolateral Striatal Medium Spiny Neurons Positively Regulate Food-Incentive, Goal-Directed Behavior Independently of D1 and D2 Selectivity.

Natsubori A, Tsutsui-Kimura I, Nishida H, Bouchekioua Y, Sekiya H, Uchigashima M, Watanabe M, de Kerchove d'Exaerde A, Mimura M, Takata N, Tanaka KF.

J Neurosci. 2017 Mar 8;37(10):2723-2733. doi: 10.1523/JNEUROSCI.3377-16.2017. Epub 2017 Feb 6.

12.

Dysfunction of ventrolateral striatal dopamine receptor type 2-expressing medium spiny neurons impairs instrumental motivation.

Tsutsui-Kimura I, Takiue H, Yoshida K, Xu M, Yano R, Ohta H, Nishida H, Bouchekioua Y, Okano H, Uchigashima M, Watanabe M, Takata N, Drew MR, Sano H, Mimura M, Tanaka KF.

Nat Commun. 2017 Feb 1;8:14304. doi: 10.1038/ncomms14304.

13.

Varenicline provokes impulsive action by stimulating α4β2 nicotinic acetylcholine receptors in the infralimbic cortex in a nicotine exposure status-dependent manner.

Ohmura Y, Sasamori H, Tsutsui-Kimura I, Izumi T, Yoshida T, Yoshioka M.

Pharmacol Biochem Behav. 2017 Mar;154:1-10. doi: 10.1016/j.pbb.2017.01.002. Epub 2017 Jan 10.

14.

Neuronal codes for the inhibitory control of impulsive actions in the rat infralimbic cortex.

Tsutsui-Kimura I, Ohmura Y, Izumi T, Matsushima T, Amita H, Yamaguchi T, Yoshida T, Yoshioka M.

Behav Brain Res. 2016 Jan 1;296:361-372. doi: 10.1016/j.bbr.2015.08.025. Epub 2015 Sep 2.

PMID:
26341319
15.

Milnacipran remediates impulsive deficits in rats with lesions of the ventromedial prefrontal cortex.

Tsutsui-Kimura I, Yoshida T, Ohmura Y, Izumi T, Yoshioka M.

Int J Neuropsychopharmacol. 2014 Dec 8;18(5). pii: pyu083. doi: 10.1093/ijnp/pyu083.

16.

[Anti-impulsivity drugs and their mechanisms of action].

Ohmura Y, Tsutsui-Kimura I, Yoshioka M.

Nihon Shinkei Seishin Yakurigaku Zasshi. 2014 Apr;34(2):41-8. Review. Japanese.

PMID:
25080806
17.

Tandospirone suppresses impulsive action by possible blockade of the 5-HT1A receptor.

Ohmura Y, Kumamoto H, Tsutsui-Kimura I, Minami M, Izumi T, Yoshida T, Yoshioka M.

J Pharmacol Sci. 2013;122(2):84-92. Epub 2013 May 24.

18.

Milnacipran enhances the control of impulsive action by activating D₁-like receptors in the infralimbic cortex.

Tsutsui-Kimura I, Ohmura Y, Izumi T, Kumamoto H, Yamaguchi T, Yoshida T, Yoshioka M.

Psychopharmacology (Berl). 2013 Jan;225(2):495-504. doi: 10.1007/s00213-012-2835-5. Epub 2012 Aug 15.

19.

Impulsive behavior and nicotinic acetylcholine receptors.

Ohmura Y, Tsutsui-Kimura I, Yoshioka M.

J Pharmacol Sci. 2012;118(4):413-22. Epub 2012 Mar 22. Review.

20.

Lithium, but not valproic acid or carbamazepine, suppresses impulsive-like action in rats.

Ohmura Y, Tsutsui-Kimura I, Kumamoto H, Minami M, Izumi T, Yamaguchi T, Yoshida T, Yoshioka M.

Psychopharmacology (Berl). 2012 Jan;219(2):421-32. doi: 10.1007/s00213-011-2496-9. Epub 2011 Sep 21.

PMID:
21947315
21.

Endogenous acetylcholine modulates impulsive action via alpha4beta2 nicotinic acetylcholine receptors in rats.

Tsutsui-Kimura I, Ohmura Y, Izumi T, Yamaguchi T, Yoshida T, Yoshioka M.

Eur J Pharmacol. 2010 Sep 1;641(2-3):148-53. doi: 10.1016/j.ejphar.2010.05.028. Epub 2010 Jun 8.

22.

Nicotine provokes impulsive-like action by stimulating alpha4beta2 nicotinic acetylcholine receptors in the infralimbic, but not in the prelimbic cortex.

Tsutsui-Kimura I, Ohmura Y, Izumi T, Yamaguchi T, Yoshida T, Yoshioka M.

Psychopharmacology (Berl). 2010 May;209(4):351-9. doi: 10.1007/s00213-010-1804-0. Epub 2010 Mar 19.

PMID:
20238211
23.

The serotonergic projection from the median raphe nucleus to the ventral hippocampus is involved in the retrieval of fear memory through the corticotropin-releasing factor type 2 receptor.

Ohmura Y, Izumi T, Yamaguchi T, Tsutsui-Kimura I, Yoshida T, Yoshioka M.

Neuropsychopharmacology. 2010 May;35(6):1271-8. doi: 10.1038/npp.2009.229. Epub 2010 Jan 13.

24.

Assessment of attentional function and impulsivity using 5-choice serial reaction time task/3-choice serial reaction time task.

Ohmura Y, Tsutsui-Kimura I, Yoshioka M.

Nihon Yakurigaku Zasshi. 2009 Sep;134(3):137-41. doi: 10.1254/fpj.134.137. Review. Japanese. No abstract available.

PMID:
19749485
25.

The effects of serotonin and/or noradrenaline reuptake inhibitors on impulsive-like action assessed by the three-choice serial reaction time task: a simple and valid model of impulsive action using rats.

Tsutsui-Kimura I, Ohmura Y, Izumi T, Yamaguchi T, Yoshida T, Yoshioka M.

Behav Pharmacol. 2009 Sep;20(5-6):474-83. doi: 10.1097/FBP.0b013e3283305e65.

Supplemental Content

Loading ...
Support Center