Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 20

1.

Confirmation of Bioinformatics Predictions of the Structural Domains in Honeybee Silk.

Woodhead AL, Church AT, Rapson TD, Trueman HE, Church JS, Sutherland TD.

Polymers (Basel). 2018 Jul 16;10(7). pii: E776. doi: 10.3390/polym10070776.

2.

Modification of Honeybee Silk by the Addition of Antimicrobial Agents.

Trueman HE, Sriskantha A, Qu Y, Rapson TD, Sutherland TD.

ACS Omega. 2017 Aug 31;2(8):4456-4463. doi: 10.1021/acsomega.7b00694. Epub 2017 Aug 11.

3.

The other prey-capture silk: Fibres made by glow-worms (Diptera: Keroplatidae) comprise cross-β-sheet crystallites in an abundant amorphous fraction.

Walker AA, Weisman S, Trueman HE, Merritt DJ, Sutherland TD.

Comp Biochem Physiol B Biochem Mol Biol. 2015 Sep;187:78-84. doi: 10.1016/j.cbpb.2015.05.008. Epub 2015 May 22.

PMID:
26006749
4.

Folding behavior of four silks of giant honey bee reflects the evolutionary conservation of aculeate silk proteins.

Maitip J, Trueman HE, Kaehler BD, Huttley GA, Chantawannakul P, Sutherland TD.

Insect Biochem Mol Biol. 2015 Apr;59:72-9. doi: 10.1016/j.ibmb.2015.02.007. Epub 2015 Feb 21.

PMID:
25712559
5.

Stabilization of viruses by encapsulation in silk proteins.

Sutherland TD, Sriskantha A, Church JS, Strive T, Trueman HE, Kameda T.

ACS Appl Mater Interfaces. 2014 Oct 22;6(20):18189-96. doi: 10.1021/am5051873. Epub 2014 Oct 1.

PMID:
25229876
6.

Micromolar biosensing of nitric oxide using myoglobin immobilized in a synthetic silk film.

Rapson TD, Church JS, Trueman HE, Dacres H, Sutherland TD, Trowell SC.

Biosens Bioelectron. 2014 Dec 15;62:214-20. doi: 10.1016/j.bios.2014.06.045. Epub 2014 Jun 26.

7.

Cross-linking in the silks of bees, ants and hornets.

Campbell PM, Trueman HE, Zhang Q, Kojima K, Kameda T, Sutherland TD.

Insect Biochem Mol Biol. 2014 May;48:40-50. doi: 10.1016/j.ibmb.2014.02.009. Epub 2014 Mar 7.

PMID:
24607851
8.

Convergently-evolved structural anomalies in the coiled coil domains of insect silk proteins.

Sutherland TD, Trueman HE, Walker AA, Weisman S, Campbell PM, Dong Z, Huson MG, Woodhead AL, Church JS.

J Struct Biol. 2014 Jun;186(3):402-11. doi: 10.1016/j.jsb.2014.01.002. Epub 2014 Jan 13.

PMID:
24434611
9.

A new class of animal collagen masquerading as an insect silk.

Sutherland TD, Peng YY, Trueman HE, Weisman S, Okada S, Walker AA, Sriskantha A, White JF, Huson MG, Werkmeister JA, Glattauer V, Stoichevska V, Mudie ST, Haritos VS, Ramshaw JA.

Sci Rep. 2013 Oct 4;3:2864. doi: 10.1038/srep02864.

10.

Harnessing disorder: onychophorans use highly unstructured proteins, not silks, for prey capture.

Haritos VS, Niranjane A, Weisman S, Trueman HE, Sriskantha A, Sutherland TD.

Proc Biol Sci. 2010 Nov 7;277(1698):3255-63. doi: 10.1098/rspb.2010.0604. Epub 2010 Jun 2.

11.

Fifty years later: the sequence, structure and function of lacewing cross-beta silk.

Weisman S, Okada S, Mudie ST, Huson MG, Trueman HE, Sriskantha A, Haritos VS, Sutherland TD.

J Struct Biol. 2009 Dec;168(3):467-75. doi: 10.1016/j.jsb.2009.07.002. Epub 2009 Jul 4.

PMID:
19580871
12.

An unlikely silk: the composite material of green lacewing cocoons.

Weisman S, Trueman HE, Mudie ST, Church JS, Sutherland TD, Haritos VS.

Biomacromolecules. 2008 Nov;9(11):3065-9. doi: 10.1021/bm8005853. Epub 2008 Oct 2.

PMID:
18828638
13.

An Australian webspinner species makes the finest known insect silk fibers.

Okada S, Weisman S, Trueman HE, Mudie ST, Haritos VS, Sutherland TD.

Int J Biol Macromol. 2008 Oct 1;43(3):271-5. doi: 10.1016/j.ijbiomac.2008.06.007. Epub 2008 Jun 21.

PMID:
18619485
14.

Conservation of essential design features in coiled coil silks.

Sutherland TD, Weisman S, Trueman HE, Sriskantha A, Trueman JW, Haritos VS.

Mol Biol Evol. 2007 Nov;24(11):2424-32. Epub 2007 Aug 16.

PMID:
17703050
15.

A highly divergent gene cluster in honey bees encodes a novel silk family.

Sutherland TD, Campbell PM, Weisman S, Trueman HE, Sriskantha A, Wanjura WJ, Haritos VS.

Genome Res. 2006 Nov;16(11):1414-21. Epub 2006 Oct 25.

16.

A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses.

Hall N, Karras M, Raine JD, Carlton JM, Kooij TW, Berriman M, Florens L, Janssen CS, Pain A, Christophides GK, James K, Rutherford K, Harris B, Harris D, Churcher C, Quail MA, Ormond D, Doggett J, Trueman HE, Mendoza J, Bidwell SL, Rajandream MA, Carucci DJ, Yates JR 3rd, Kafatos FC, Janse CJ, Barrell B, Turner CM, Waters AP, Sinden RE.

Science. 2005 Jan 7;307(5706):82-6.

17.

Functional characterization of an LCCL-lectin domain containing protein family in Plasmodium berghei.

Trueman HE, Raine JD, Florens L, Dessens JT, Mendoza J, Johnson J, Waller CC, Delrieu I, Holders AA, Langhorne J, Carucci DJ, Yates JR 3rd, Sinden RE.

J Parasitol. 2004 Oct;90(5):1062-71.

PMID:
15562607
18.
19.

A malaria scavenger receptor-like protein essential for parasite development.

Claudianos C, Dessens JT, Trueman HE, Arai M, Mendoza J, Butcher GA, Crompton T, Sinden RE.

Mol Microbiol. 2002 Sep;45(6):1473-84.

20.

Polymorphic microsatellite markers identified in individual Plasmodium falciparum oocysts from wild-caught Anopheles mosquitoes.

Anthony TG, Trueman HE, Harbach RE, Vogler AP.

Parasitology. 2000 Aug;121 ( Pt 2):121-6.

PMID:
11085231

Supplemental Content

Loading ...
Support Center