Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 37

1.

Methionine sulfoxide reductase A (MsrA) mediates the ubiquitination of 14-3-3 protein isotypes in brain.

Deng Y, Jiang B, Rankin CL, Toyo-Oka K, Richter ML, Maupin-Furlow JA, Moskovitz J.

Free Radic Biol Med. 2018 Dec;129:600-607. doi: 10.1016/j.freeradbiomed.2018.08.002. Epub 2018 Aug 7.

PMID:
30096435
2.

Neurodevelopmental Genetic Diseases Associated With Microdeletions and Microduplications of Chromosome 17p13.3.

Blazejewski SM, Bennison SA, Smith TH, Toyo-Oka K.

Front Genet. 2018 Mar 23;9:80. doi: 10.3389/fgene.2018.00080. eCollection 2018. Review.

3.

14-3-3 Proteins in Brain Development: Neurogenesis, Neuronal Migration and Neuromorphogenesis.

Cornell B, Toyo-Oka K.

Front Mol Neurosci. 2017 Oct 12;10:318. doi: 10.3389/fnmol.2017.00318. eCollection 2017. Review.

4.

Regulation of neuronal morphogenesis by 14-3-3epsilon (Ywhae) via the microtubule binding protein, doublecortin.

Cornell B, Wachi T, Zhukarev V, Toyo-Oka K.

Hum Mol Genet. 2016 Oct 15;25(20):4405-4418. doi: 10.1093/hmg/ddw270. Erratum in: Hum Mol Genet. 2016 Oct 15;25(20):4610.

5.

Regulation of neuronal morphogenesis by 14-3-3epsilon (Ywhae) via the microtubule binding protein, doublecortin.

Cornell B, Wachi T, Zhukarev V, Toyo-Oka K.

Hum Mol Genet. 2016 Oct 15;25(20):4610. doi: 10.1093/hmg/ddx023. No abstract available.

6.

Complete ablation of the 14-3-3epsilon protein results in multiple defects in neuropsychiatric behaviors.

Wachi T, Cornell B, Toyo-Oka K.

Behav Brain Res. 2017 Feb 15;319:31-36. doi: 10.1016/j.bbr.2016.11.016. Epub 2016 Nov 11.

7.

Overexpression of the 14-3-3gamma protein in embryonic mice results in neuronal migration delay in the developing cerebral cortex.

Cornell B, Wachi T, Zhukarev V, Toyo-Oka K.

Neurosci Lett. 2016 Aug 15;628:40-6. doi: 10.1016/j.neulet.2016.06.009. Epub 2016 Jun 7.

PMID:
27288018
8.

Deficiency of 14-3-3ε and 14-3-3ζ by the Wnt1 promoter-driven Cre recombinase results in pigmentation defects.

Cornell B, Toyo-oka K.

BMC Res Notes. 2016 Mar 22;9:180. doi: 10.1186/s13104-016-1980-z.

9.

Ablation of the 14-3-3gamma Protein Results in Neuronal Migration Delay and Morphological Defects in the Developing Cerebral Cortex.

Wachi T, Cornell B, Marshall C, Zhukarev V, Baas PW, Toyo-oka K.

Dev Neurobiol. 2016 Jun;76(6):600-14. doi: 10.1002/dneu.22335. Epub 2015 Aug 28.

10.

14-3-3ε and ζ regulate neurogenesis and differentiation of neuronal progenitor cells in the developing brain.

Toyo-oka K, Wachi T, Hunt RF, Baraban SC, Taya S, Ramshaw H, Kaibuchi K, Schwarz QP, Lopez AF, Wynshaw-Boris A.

J Neurosci. 2014 Sep 3;34(36):12168-81. doi: 10.1523/JNEUROSCI.2513-13.2014.

11.

14-3-3ε plays a role in cardiac ventricular compaction by regulating the cardiomyocyte cell cycle.

Kosaka Y, Cieslik KA, Li L, Lezin G, Maguire CT, Saijoh Y, Toyo-oka K, Gambello MJ, Vatta M, Wynshaw-Boris A, Baldini A, Yost HJ, Brunelli L.

Mol Cell Biol. 2012 Dec;32(24):5089-102. doi: 10.1128/MCB.00829-12. Epub 2012 Oct 15.

12.

Neurodevelopmental and neuropsychiatric behaviour defects arise from 14-3-3ζ deficiency.

Cheah PS, Ramshaw HS, Thomas PQ, Toyo-Oka K, Xu X, Martin S, Coyle P, Guthridge MA, Stomski F, van den Buuse M, Wynshaw-Boris A, Lopez AF, Schwarz QP.

Mol Psychiatry. 2012 Apr;17(4):451-66. doi: 10.1038/mp.2011.158. Epub 2011 Nov 29.

PMID:
22124272
13.

Identification of YWHAE, a gene encoding 14-3-3epsilon, as a possible susceptibility gene for schizophrenia.

Ikeda M, Hikita T, Taya S, Uraguchi-Asaki J, Toyo-oka K, Wynshaw-Boris A, Ujike H, Inada T, Takao K, Miyakawa T, Ozaki N, Kaibuchi K, Iwata N.

Hum Mol Genet. 2008 Oct 15;17(20):3212-22. doi: 10.1093/hmg/ddn217. Epub 2008 Jul 24.

PMID:
18658164
14.

Protein phosphatase 4 catalytic subunit regulates Cdk1 activity and microtubule organization via NDEL1 dephosphorylation.

Toyo-oka K, Mori D, Yano Y, Shiota M, Iwao H, Goto H, Inagaki M, Hiraiwa N, Muramatsu M, Wynshaw-Boris A, Yoshiki A, Hirotsune S.

J Cell Biol. 2008 Mar 24;180(6):1133-47. doi: 10.1083/jcb.200705148. Epub 2008 Mar 17.

15.

Neuroepithelial stem cell proliferation requires LIS1 for precise spindle orientation and symmetric division.

Yingling J, Youn YH, Darling D, Toyo-Oka K, Pramparo T, Hirotsune S, Wynshaw-Boris A.

Cell. 2008 Feb 8;132(3):474-86. doi: 10.1016/j.cell.2008.01.026.

16.

NDEL1 phosphorylation by Aurora-A kinase is essential for centrosomal maturation, separation, and TACC3 recruitment.

Mori D, Yano Y, Toyo-oka K, Yoshida N, Yamada M, Muramatsu M, Zhang D, Saya H, Toyoshima YY, Kinoshita K, Wynshaw-Boris A, Hirotsune S.

Mol Cell Biol. 2007 Jan;27(1):352-67. Epub 2006 Oct 23.

17.

Mnt-deficient mammary glands exhibit impaired involution and tumors with characteristics of myc overexpression.

Toyo-oka K, Bowen TJ, Hirotsune S, Li Z, Jain S, Ota S, Escoubet-Lozach L, Garcia-Bassets I, Lozach J, Rosenfeld MG, Glass CK, Eisenman R, Ren B, Hurlin P, Wynshaw-Boris A.

Cancer Res. 2006 Jun 1;66(11):5565-73. Erratum in: Cancer Res. 2006 Jul 1;66(13):6894. Lozach, Laure Escoubet [corrected to Escoubet-Lozach, Laure]; Bassett, Ivan Garcia [corrected to Garcia-Bassets, Ivan].

18.

Recruitment of katanin p60 by phosphorylated NDEL1, an LIS1 interacting protein, is essential for mitotic cell division and neuronal migration.

Toyo-Oka K, Sasaki S, Yano Y, Mori D, Kobayashi T, Toyoshima YY, Tokuoka SM, Ishii S, Shimizu T, Muramatsu M, Hiraiwa N, Yoshiki A, Wynshaw-Boris A, Hirotsune S.

Hum Mol Genet. 2005 Nov 1;14(21):3113-28. Epub 2005 Oct 3.

PMID:
16203747
19.

Complete loss of Ndel1 results in neuronal migration defects and early embryonic lethality.

Sasaki S, Mori D, Toyo-oka K, Chen A, Garrett-Beal L, Muramatsu M, Miyagawa S, Hiraiwa N, Yoshiki A, Wynshaw-Boris A, Hirotsune S.

Mol Cell Biol. 2005 Sep;25(17):7812-27.

20.

Loss of the Max-interacting protein Mnt in mice results in decreased viability, defective embryonic growth and craniofacial defects: relevance to Miller-Dieker syndrome.

Toyo-oka K, Hirotsune S, Gambello MJ, Zhou ZQ, Olson L, Rosenfeld MG, Eisenman R, Hurlin P, Wynshaw-Boris A.

Hum Mol Genet. 2004 May 15;13(10):1057-67. Epub 2004 Mar 17.

PMID:
15028671
21.

Evidence of mnt-myc antagonism revealed by mnt gene deletion.

Hurlin PJ, Zhou ZQ, Toyo-Oka K, Ota S, Walker WL, Hirotsune S, Wynshaw-Boris A.

Cell Cycle. 2004 Feb;3(2):97-9. Review.

PMID:
14712062
22.

Deletion of Mnt leads to disrupted cell cycle control and tumorigenesis.

Hurlin PJ, Zhou ZQ, Toyo-oka K, Ota S, Walker WL, Hirotsune S, Wynshaw-Boris A.

EMBO J. 2003 Sep 15;22(18):4584-96.

23.

Miller-Dieker syndrome: analysis of a human contiguous gene syndrome in the mouse.

Yingling J, Toyo-Oka K, Wynshaw-Boris A.

Am J Hum Genet. 2003 Sep;73(3):475-88. Epub 2003 Aug 5. Review. No abstract available.

24.

14-3-3epsilon is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller-Dieker syndrome.

Toyo-oka K, Shionoya A, Gambello MJ, Cardoso C, Leventer R, Ward HL, Ayala R, Tsai LH, Dobyns W, Ledbetter D, Hirotsune S, Wynshaw-Boris A.

Nat Genet. 2003 Jul;34(3):274-85.

PMID:
12796778
25.

Refinement of a 400-kb critical region allows genotypic differentiation between isolated lissencephaly, Miller-Dieker syndrome, and other phenotypes secondary to deletions of 17p13.3.

Cardoso C, Leventer RJ, Ward HL, Toyo-Oka K, Chung J, Gross A, Martin CL, Allanson J, Pilz DT, Olney AH, Mutchinick OM, Hirotsune S, Wynshaw-Boris A, Dobyns WB, Ledbetter DH.

Am J Hum Genet. 2003 Apr;72(4):918-30. Epub 2003 Mar 5.

26.

Functional annotation of a full-length mouse cDNA collection.

Kawai J, Shinagawa A, Shibata K, Yoshino M, Itoh M, Ishii Y, Arakawa T, Hara A, Fukunishi Y, Konno H, Adachi J, Fukuda S, Aizawa K, Izawa M, Nishi K, Kiyosawa H, Kondo S, Yamanaka I, Saito T, Okazaki Y, Gojobori T, Bono H, Kasukawa T, Saito R, Kadota K, Matsuda H, Ashburner M, Batalov S, Casavant T, Fleischmann W, Gaasterland T, Gissi C, King B, Kochiwa H, Kuehl P, Lewis S, Matsuo Y, Nikaido I, Pesole G, Quackenbush J, Schriml LM, Staubli F, Suzuki R, Tomita M, Wagner L, Washio T, Sakai K, Okido T, Furuno M, Aono H, Baldarelli R, Barsh G, Blake J, Boffelli D, Bojunga N, Carninci P, de Bonaldo MF, Brownstein MJ, Bult C, Fletcher C, Fujita M, Gariboldi M, Gustincich S, Hill D, Hofmann M, Hume DA, Kamiya M, Lee NH, Lyons P, Marchionni L, Mashima J, Mazzarelli J, Mombaerts P, Nordone P, Ring B, Ringwald M, Rodriguez I, Sakamoto N, Sasaki H, Sato K, Schönbach C, Seya T, Shibata Y, Storch KF, Suzuki H, Toyo-oka K, Wang KH, Weitz C, Whittaker C, Wilming L, Wynshaw-Boris A, Yoshida K, Hasegawa Y, Kawaji H, Kohtsuki S, Hayashizaki Y; RIKEN Genome Exploration Research Group Phase II Team and the FANTOM Consortium.

Nature. 2001 Feb 8;409(6821):685-90.

PMID:
11217851
27.
28.

Non-CD28 costimulatory molecules present in T cell rafts induce T cell costimulation by enhancing the association of TCR with rafts.

Yashiro-Ohtani Y, Zhou XY, Toyo-Oka K, Tai XG, Park CS, Hamaoka T, Abe R, Miyake K, Fujiwara H.

J Immunol. 2000 Feb 1;164(3):1251-9.

29.

Association of a tetraspanin CD9 with CD5 on the T cell surface: role of particular transmembrane domains in the association.

Toyo-oka K, Yashiro-Ohtani Y, Park CS, Tai XG, Miyake K, Hamaoka T, Fujiwara H.

Int Immunol. 1999 Dec;11(12):2043-52.

PMID:
10590270
30.

Differential involvement of a Fas-CPP32-like protease pathway in apoptosis of TCR/CD9-costimulated, naive T cells and TCR-restimulated, activated T cells.

Park CS, Yashiro Y, Tai XG, Toyo-oka K, Hamaoka T, Yagita H, Okumura K, Neben S, Fujiwara H.

J Immunol. 1998 Jun 15;160(12):5790-6.

31.

A fundamental difference in the capacity to induce proliferation of naive T cells between CD28 and other co-stimulatory molecules.

Yashiro Y, Tai XG, Toyo-oka K, Park CS, Abe R, Hamaoka T, Kobayashi M, Neben S, Fujiwara H.

Eur J Immunol. 1998 Mar;28(3):926-35.

32.

Suppression of allograft responses induced by interleukin-6, which selectively modulates interferon-gamma but not interleukin-2 production.

Tomura M, Nakatani I, Murachi M, Tai XG, Toyo-oka K, Fujiwara H.

Transplantation. 1997 Sep 15;64(5):757-63.

PMID:
9311716
33.

Synergy between CD28 and CD9 costimulation for naive T-cell activation.

Toyo-oka K, Tai XG, Yashiro Y, Ahn HJ, Abe R, Hamaoka T, Kobayashi M, Neben S, Fujiwara H.

Immunol Lett. 1997 Jun;58(1):19-23.

PMID:
9436464
34.

Expression of an inducible type of nitric oxide (NO) synthase in the thymus and involvement of NO in deletion of TCR-stimulated double-positive thymocytes.

Tai XG, Toyo-oka K, Yamamoto N, Yashiro Y, Mu J, Hamaoka T, Fujiwara H.

J Immunol. 1997 May 15;158(10):4696-703.

PMID:
9144482
35.

IL-12 produced by antigen-presenting cells induces IL-2-independent proliferation of T helper cell clones.

Maruo S, Toyo-oka K, Oh-hora M, Tai XG, Iwata H, Takenaka H, Yamada S, Ono S, Hamaoka T, Kobayashi M, Wysocka M, Trinchieri G, Fujiwara H.

J Immunol. 1996 Mar 1;156(5):1748-55.

PMID:
8596023
36.

Suppression of allograft responses by combining alloantigen-specific i.v. presensitization with suboptimal doses of FK 506 or rapamycin.

Iwata H, Nagano T, Toyo-oka K, Hirose H, Hamaoka T, Fujiwara H.

Transplant Proc. 1994 Apr;26(2):851-4. No abstract available.

PMID:
7513476
37.

Suppression of allograft responses by combining alloantigen-specific i.v. pre-sensitization with suboptimal doses of rapamycin.

Iwata H, Nagano T, Toyo-oka K, Hirose H, Hamaoka T, Fujiwara H.

Int Immunol. 1994 Jan;6(1):93-9.

PMID:
7511931

Supplemental Content

Loading ...
Support Center