Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 22

1.

Polymer-grafted chromatography media for the purification of enveloped virus-like particles, exemplified with HIV-1 gag VLP.

Pereira Aguilar P, Schneider TA, Wetter V, Maresch D, Ling WL, Tover A, Steppert P, Jungbauer A.

Vaccine. 2019 Nov 8;37(47):7070-7080. doi: 10.1016/j.vaccine.2019.07.001. Epub 2019 Jul 9.

2.

Separation of virus-like particles and extracellular vesicles by flow-through and heparin affinity chromatography.

Reiter K, Aguilar PP, Wetter V, Steppert P, Tover A, Jungbauer A.

J Chromatogr A. 2019 Mar 15;1588:77-84. doi: 10.1016/j.chroma.2018.12.035. Epub 2018 Dec 18.

3.

First trimester expression of anorectal malformation: Case report and review of the literature.

Liberty G, Bardin R, Gilboa Y, Tover A, Mashiach R, Mazaki E, Shen O.

J Clin Ultrasound. 2018 Nov;46(9):591-597. doi: 10.1002/jcu.22612. Epub 2018 Sep 19. Review.

PMID:
30229929
4.

Quantification and characterization of virus-like particles by size-exclusion chromatography and nanoparticle tracking analysis.

Steppert P, Burgstaller D, Klausberger M, Tover A, Berger E, Jungbauer A.

J Chromatogr A. 2017 Mar 3;1487:89-99. doi: 10.1016/j.chroma.2016.12.085. Epub 2017 Jan 4.

5.

Separation of HIV-1 gag virus-like particles from vesicular particles impurities by hydroxyl-functionalized monoliths.

Steppert P, Burgstaller D, Klausberger M, Kramberger P, Tover A, Berger E, Nöbauer K, Razzazi-Fazeli E, Jungbauer A.

J Sep Sci. 2017 Feb;40(4):979-990. doi: 10.1002/jssc.201600765. Epub 2017 Jan 20.

PMID:
27928907
6.

Purification of HIV-1 gag virus-like particles and separation of other extracellular particles.

Steppert P, Burgstaller D, Klausberger M, Berger E, Aguilar PP, Schneider TA, Kramberger P, Tover A, Nöbauer K, Razzazi-Fazeli E, Jungbauer A.

J Chromatogr A. 2016 Jul 15;1455:93-101. doi: 10.1016/j.chroma.2016.05.053. Epub 2016 May 18.

7.

Phenylboronic acid as a multi-modal ligand for the capture of monoclonal antibodies: development and optimization of a washing step.

dos Santos R, Rosa SA, Aires-Barros MR, Tover A, Azevedo AM.

J Chromatogr A. 2014 Aug 15;1355:115-24. doi: 10.1016/j.chroma.2014.06.001. Epub 2014 Jun 6.

PMID:
24947887
8.

New generation of efficient peptide-based vectors, NickFects, for the delivery of nucleic acids.

Arukuusk P, Pärnaste L, Oskolkov N, Copolovici DM, Margus H, Padari K, Möll K, Maslovskaja J, Tegova R, Kivi G, Tover A, Pooga M, Ustav M, Langel U.

Biochim Biophys Acta. 2013 May;1828(5):1365-73. doi: 10.1016/j.bbamem.2013.01.011. Epub 2013 Jan 26.

9.

Homologous recombination is facilitated in starving populations of Pseudomonas putida by phenol stress and affected by chromosomal location of the recombination target.

Tavita K, Mikkel K, Tark-Dame M, Jerabek H, Teras R, Sidorenko J, Tegova R, Tover A, Dame RT, Kivisaar M.

Mutat Res. 2012 Sep 1;737(1-2):12-24. doi: 10.1016/j.mrfmmm.2012.07.004. Epub 2012 Aug 10.

PMID:
22917545
10.

Molecular characterization of Rif(r) mutations in Pseudomonas aeruginosa and Pseudomonas putida.

Jatsenko T, Tover A, Tegova R, Kivisaar M.

Mutat Res. 2010 Jan 5;683(1-2):106-14. doi: 10.1016/j.mrfmmm.2009.10.015.

PMID:
19887074
11.

Elevated mutation frequency in surviving populations of carbon-starved rpoS-deficient Pseudomonas putida is caused by reduced expression of superoxide dismutase and catalase.

Tarassova K, Tegova R, Tover A, Teras R, Tark M, Saumaa S, Kivisaar M.

J Bacteriol. 2009 Jun;191(11):3604-14. doi: 10.1128/JB.01803-08. Epub 2009 Apr 3.

12.

Dual role of NER in mutagenesis in Pseudomonas putida.

Tark M, Tover A, Koorits L, Tegova R, Kivisaar M.

DNA Repair (Amst). 2008 Jan 1;7(1):20-30. Epub 2007 Aug 27.

PMID:
17720631
13.

Oxidative DNA damage defense systems in avoidance of stationary-phase mutagenesis in Pseudomonas putida.

Saumaa S, Tover A, Tark M, Tegova R, Kivisaar M.

J Bacteriol. 2007 Aug;189(15):5504-14. Epub 2007 Jun 1.

14.

Study of factors which negatively affect expression of the phenol degradation operon pheBA in Pseudomonas putida.

Putrinš M, Tover A, Tegova R, Saks Ü, Kivisaar M.

Microbiology. 2007 Jun;153(Pt 6):1860-1871. doi: 10.1099/mic.0.2006/003681-0.

PMID:
17526843
15.

Study of involvement of ImuB and DnaE2 in stationary-phase mutagenesis in Pseudomonas putida.

Koorits L, Tegova R, Tark M, Tarassova K, Tover A, Kivisaar M.

DNA Repair (Amst). 2007 Jun 1;6(6):863-8. Epub 2007 Feb 28.

PMID:
17331811
16.

Involvement of DNA mismatch repair in stationary-phase mutagenesis during prolonged starvation of Pseudomonas putida.

Saumaa S, Tarassova K, Tark M, Tover A, Tegova R, Kivisaar M.

DNA Repair (Amst). 2006 Apr 8;5(4):505-14. Epub 2006 Jan 18.

PMID:
16414311
17.

A DNA polymerase V homologue encoded by TOL plasmid pWW0 confers evolutionary fitness on Pseudomonas putida under conditions of environmental stress.

Tark M, Tover A, Tarassova K, Tegova R, Kivi G, Hõrak R, Kivisaar M.

J Bacteriol. 2005 Aug;187(15):5203-13.

18.

Involvement of error-prone DNA polymerase IV in stationary-phase mutagenesis in Pseudomonas putida.

Tegova R, Tover A, Tarassova K, Tark M, Kivisaar M.

J Bacteriol. 2004 May;186(9):2735-44.

20.

Growth medium composition-determined regulatory mechanisms are superimposed on CatR-mediated transcription from the pheBA and catBCA promoters in Pseudomonas putida.

Tover A, Ojangu EL, Kivisaar M.

Microbiology. 2001 Aug;147(Pt 8):2149-2156. doi: 10.1099/00221287-147-8-2149.

PMID:
11495992
22.

Critical nucleotides in the interaction of CatR with the pheBA promoter: conservation of the CatR-mediated regulation mechanisms between the pheBA and catBCA operons.

Tover A, Zernant J, Chugani SA, Chakrabarty AM, Kivisaar M.

Microbiology. 2000 Jan;146 ( Pt 1):173-183. doi: 10.1099/00221287-146-1-173.

PMID:
10658664

Supplemental Content

Support Center