Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 26

1.

Impact of FiuA Outer Membrane Receptor Polymorphism on the Resistance of Pseudomonas aeruginosa toward Peptidoglycan Lipid II-Targeting PaeM Pyocins.

Latino L, Patin D, Chérier D, Touzé T, Pourcel C, Barreteau H, Mengin-Lecreulx D.

J Bacteriol. 2019 Jun 10;201(13). pii: e00164-19. doi: 10.1128/JB.00164-19. Print 2019 Jul 1.

PMID:
30988031
2.

Crystal structure of undecaprenyl-pyrophosphate phosphatase and its role in peptidoglycan biosynthesis.

El Ghachi M, Howe N, Huang CY, Olieric V, Warshamanage R, Touzé T, Weichert D, Stansfeld PJ, Wang M, Kerff F, Caffrey M.

Nat Commun. 2018 Mar 14;9(1):1078. doi: 10.1038/s41467-018-03477-5.

3.

Crystal structure and biochemical characterization of the transmembrane PAP2 type phosphatidylglycerol phosphate phosphatase from Bacillus subtilis.

Ghachi ME, Howe N, Auger R, Lambion A, Guiseppi A, Delbrassine F, Manat G, Roure S, Peslier S, Sauvage E, Vogeley L, Rengifo-Gonzalez JC, Charlier P, Mengin-Lecreulx D, Foglino M, Touzé T, Caffrey M, Kerff F.

Cell Mol Life Sci. 2017 Jun;74(12):2319-2332. doi: 10.1007/s00018-017-2464-6. Epub 2017 Feb 6.

PMID:
28168443
4.

Pectocin M1 (PcaM1) Inhibits Escherichia coli Cell Growth and Peptidoglycan Biosynthesis through Periplasmic Expression.

Chérier D, Giacomucci S, Patin D, Bouhss A, Touzé T, Blanot D, Mengin-Lecreulx D, Barreteau H.

Antibiotics (Basel). 2016 Oct 8;5(4). pii: E36.

5.

Membrane Topology and Biochemical Characterization of the Escherichia coli BacA Undecaprenyl-Pyrophosphate Phosphatase.

Manat G, El Ghachi M, Auger R, Baouche K, Olatunji S, Kerff F, Touzé T, Mengin-Lecreulx D, Bouhss A.

PLoS One. 2015 Nov 11;10(11):e0142870. doi: 10.1371/journal.pone.0142870. eCollection 2015.

6.

Deciphering the metabolism of undecaprenyl-phosphate: the bacterial cell-wall unit carrier at the membrane frontier.

Manat G, Roure S, Auger R, Bouhss A, Barreteau H, Mengin-Lecreulx D, Touzé T.

Microb Drug Resist. 2014 Jun;20(3):199-214. doi: 10.1089/mdr.2014.0035. Epub 2014 May 5. Review.

7.

Colicin M, a peptidoglycan lipid-II-degrading enzyme: potential use for antibacterial means?

Touzé T, Barreteau H, El Ghachi M, Bouhss A, Barnéoud-Arnoulet A, Patin D, Sacco E, Blanot D, Arthur M, Duché D, Lloubès R, Mengin-Lecreulx D.

Biochem Soc Trans. 2012 Dec 1;40(6):1522-7. doi: 10.1042/BST20120189.

PMID:
23176510
8.

Functional and structural characterization of PaeM, a colicin M-like bacteriocin produced by Pseudomonas aeruginosa.

Barreteau H, Tiouajni M, Graille M, Josseaume N, Bouhss A, Patin D, Blanot D, Fourgeaud M, Mainardi JL, Arthur M, van Tilbeurgh H, Mengin-Lecreulx D, Touzé T.

J Biol Chem. 2012 Oct 26;287(44):37395-405. doi: 10.1074/jbc.M112.406439. Epub 2012 Sep 12.

9.

Characterization of colicin M and its orthologs targeting bacterial cell wall peptidoglycan biosynthesis.

Barreteau H, El Ghachi M, Barnéoud-Arnoulet A, Sacco E, Touzé T, Duché D, Gérard F, Brooks M, Patin D, Bouhss A, Blanot D, van Tilbeurgh H, Arthur M, Lloubès R, Mengin-Lecreulx D.

Microb Drug Resist. 2012 Jun;18(3):222-9. doi: 10.1089/mdr.2011.0230. Epub 2012 Mar 20. Review.

PMID:
22432709
10.

Colicin M hydrolyses branched lipids II from Gram-positive bacteria.

Patin D, Barreteau H, Auger G, Magnet S, Crouvoisier M, Bouhss A, Touzé T, Arthur M, Mengin-Lecreulx D, Blanot D.

Biochimie. 2012 Apr;94(4):985-90. doi: 10.1016/j.biochi.2011.12.019. Epub 2011 Dec 26.

PMID:
22210388
11.

X-ray structure and site-directed mutagenesis analysis of the Escherichia coli colicin M immunity protein.

Gérard F, Brooks MA, Barreteau H, Touzé T, Graille M, Bouhss A, Blanot D, van Tilbeurgh H, Mengin-Lecreulx D.

J Bacteriol. 2011 Jan;193(1):205-14. doi: 10.1128/JB.01119-10. Epub 2010 Oct 29.

12.

Toxicity of the colicin M catalytic domain exported to the periplasm is FkpA independent.

Barnéoud-Arnoulet A, Barreteau H, Touzé T, Mengin-Lecreulx D, Lloubès R, Duché D.

J Bacteriol. 2010 Oct;192(19):5212-9. doi: 10.1128/JB.00431-10. Epub 2010 Jul 30.

13.

Deciphering the catalytic domain of colicin M, a peptidoglycan lipid II-degrading enzyme.

Barreteau H, Bouhss A, Gérard F, Duché D, Boussaid B, Blanot D, Lloubès R, Mengin-Lecreulx D, Touzé T.

J Biol Chem. 2010 Apr 16;285(16):12378-89. doi: 10.1074/jbc.M109.093583. Epub 2010 Feb 16.

14.

An efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria.

Hynninen A, Touzé T, Pitkänen L, Mengin-Lecreulx D, Virta M.

Mol Microbiol. 2009 Oct;74(2):384-94. doi: 10.1111/j.1365-2958.2009.06868.x. Epub 2009 Sep 8.

15.

Human- and plant-pathogenic Pseudomonas species produce bacteriocins exhibiting colicin M-like hydrolase activity towards peptidoglycan precursors.

Barreteau H, Bouhss A, Fourgeaud M, Mainardi JL, Touzé T, Gérard F, Blanot D, Arthur M, Mengin-Lecreulx D.

J Bacteriol. 2009 Jun;191(11):3657-64. doi: 10.1128/JB.01824-08. Epub 2009 Apr 3.

16.

Quantitative high-performance liquid chromatography analysis of the pool levels of undecaprenyl phosphate and its derivatives in bacterial membranes.

Barreteau H, Magnet S, El Ghachi M, Touzé T, Arthur M, Mengin-Lecreulx D, Blanot D.

J Chromatogr B Analyt Technol Biomed Life Sci. 2009 Jan 15;877(3):213-20. doi: 10.1016/j.jchromb.2008.12.010. Epub 2008 Dec 11.

PMID:
19110475
17.

Undecaprenyl Phosphate Synthesis.

TouzÉ T, Mengin-Lecreulx D.

EcoSal Plus. 2008 Sep;3(1). doi: 10.1128/ecosalplus.4.7.1.7.

PMID:
26443724
18.

Substrate specificity and membrane topology of Escherichia coli PgpB, an undecaprenyl pyrophosphate phosphatase.

Touzé T, Blanot D, Mengin-Lecreulx D.

J Biol Chem. 2008 Jun 13;283(24):16573-83. doi: 10.1074/jbc.M800394200. Epub 2008 Apr 14.

19.

Periplasmic phosphorylation of lipid A is linked to the synthesis of undecaprenyl phosphate.

Touzé T, Tran AX, Hankins JV, Mengin-Lecreulx D, Trent MS.

Mol Microbiol. 2008 Jan;67(2):264-77. Epub 2007 Nov 27.

20.

Colicin M exerts its bacteriolytic effect via enzymatic degradation of undecaprenyl phosphate-linked peptidoglycan precursors.

El Ghachi M, Bouhss A, Barreteau H, Touzé T, Auger G, Blanot D, Mengin-Lecreulx D.

J Biol Chem. 2006 Aug 11;281(32):22761-72. Epub 2006 Jun 15.

21.

Mutations of ousA alter the virulence of Erwinia chrysanthemi.

Gloux K, Touze T, Pagot Y, Jouan B, Blanco C.

Mol Plant Microbe Interact. 2005 Feb;18(2):150-7.

22.

Erwinia chrysanthemi O antigen is required for betaine osmoprotection in high-salt media.

Touzé T, Goude R, Georgeault S, Blanco C, Bonnassie S.

J Bacteriol. 2004 Aug;186(16):5547-50.

23.

Interactions underlying assembly of the Escherichia coli AcrAB-TolC multidrug efflux system.

Touzé T, Eswaran J, Bokma E, Koronakis E, Hughes C, Koronakis V.

Mol Microbiol. 2004 Jul;53(2):697-706.

24.

Self-association of EPEC intimin mediated by the beta-barrel-containing anchor domain: a role in clustering of the Tir receptor.

Touzé T, Hayward RD, Eswaran J, Leong JM, Koronakis V.

Mol Microbiol. 2004 Jan;51(1):73-87.

25.

Glycine betaine loses its osmoprotective activity in a bspA strain of Erwinia chrysanthemi.

Touzé T, Gouesbet G, Boiangiu C, Jebbar M, Bonnassie S, Blanco C.

Mol Microbiol. 2001 Oct;42(1):87-99.

26.

Glycine betaine-assisted protein folding in a lysA mutant of Escherichia coli.

Bourot S, Sire O, Trautwetter A, Touzé T, Wu LF, Blanco C, Bernard T.

J Biol Chem. 2000 Jan 14;275(2):1050-6.

Supplemental Content

Support Center