Sort by
Items per page

Send to

Choose Destination

Search results

Items: 18


Quantifying dynamic mechanisms of auto-regulation in Escherichia coli with synthetic promoter in response to varying external phosphate levels.

Uluşeker C, Torres-Bacete J, García JL, Hanczyc MM, Nogales J, Kahramanoğulları O.

Sci Rep. 2019 Feb 14;9(1):2076. doi: 10.1038/s41598-018-38223-w.


The Mammalian Sterile 20-like 1 Kinase Controls Selective CCR7-Dependent Functions in Human Dendritic Cells.

Torres-Bacete J, Delgado-Martín C, Gómez-Moreira C, Simizu S, Rodríguez-Fernández JL.

J Immunol. 2015 Aug 1;195(3):973-81. doi: 10.4049/jimmunol.1401966. Epub 2015 Jun 26.


Conserved amino acid residues of the NuoD segment important for structure and function of Escherichia coli NDH-1 (complex I).

Sinha PK, Castro-Guerrero N, Patki G, Sato M, Torres-Bacete J, Sinha S, Miyoshi H, Matsuno-Yagi A, Yagi T.

Biochemistry. 2015 Jan 27;54(3):753-64. doi: 10.1021/bi501403t. Epub 2015 Jan 13.


Overexpression of penicillin V acylase from Streptomyces lavendulae and elucidation of its catalytic residues.

Torres-Bacete J, Hormigo D, Torres-Gúzman R, Arroyo M, Castillón MP, García L, Acebal C, de la Mata I.

Appl Environ Microbiol. 2015 Feb;81(4):1225-33.


A novel MEK-ERK-AMPK signaling axis controls chemokine receptor CCR7-dependent survival in human mature dendritic cells.

López-Cotarelo P, Escribano-Díaz C, González-Bethencourt IL, Gómez-Moreira C, Deguiz ML, Torres-Bacete J, Gómez-Cabañas L, Fernández-Barrera J, Delgado-Martín C, Mellado M, Regueiro JR, Miranda-Carús ME, Rodríguez-Fernández JL.

J Biol Chem. 2015 Jan 9;290(2):827-40. doi: 10.1074/jbc.M114.596551. Epub 2014 Nov 25.


Essential regions in the membrane domain of bacterial complex I (NDH-1): the machinery for proton translocation.

Sato M, Torres-Bacete J, Sinha PK, Matsuno-Yagi A, Yagi T.

J Bioenerg Biomembr. 2014 Aug;46(4):279-87. doi: 10.1007/s10863-014-9558-8. Epub 2014 Jun 29. Review.


Energy transducing roles of antiporter-like subunits in Escherichia coli NDH-1 with main focus on subunit NuoN (ND2).

Sato M, Sinha PK, Torres-Bacete J, Matsuno-Yagi A, Yagi T.

J Biol Chem. 2013 Aug 23;288(34):24705-16. doi: 10.1074/jbc.M113.482968. Epub 2013 Jul 17.


Roles of subunit NuoK (ND4L) in the energy-transducing mechanism of Escherichia coli NDH-1 (NADH:quinone oxidoreductase).

Torres-Bacete J, Sinha PK, Sato M, Patki G, Kao MC, Matsuno-Yagi A, Yagi T.

J Biol Chem. 2012 Dec 14;287(51):42763-72. doi: 10.1074/jbc.M112.422824. Epub 2012 Oct 27.


Electron transfer in subunit NuoI (TYKY) of Escherichia coli NADH:quinone oxidoreductase (NDH-1).

Sinha PK, Nakamaru-Ogiso E, Torres-Bacete J, Sato M, Castro-Guerrero N, Ohnishi T, Matsuno-Yagi A, Yagi T.

J Biol Chem. 2012 May 18;287(21):17363-73. doi: 10.1074/jbc.M111.329649. Epub 2012 Apr 2.


Structural contribution of C-terminal segments of NuoL (ND5) and NuoM (ND4) subunits of complex I from Escherichia coli.

Torres-Bacete J, Sinha PK, Matsuno-Yagi A, Yagi T.

J Biol Chem. 2011 Sep 30;286(39):34007-14. doi: 10.1074/jbc.M111.260968. Epub 2011 Aug 11.


Pivotal roles of three conserved carboxyl residues of the NuoC (30k) segment in the structural integrity of proton-translocating NADH-quinone oxidoreductase from Escherichia coli.

Castro-Guerrero N, Sinha PK, Torres-Bacete J, Matsuno-Yagi A, Yagi T.

Biochemistry. 2010 Nov 30;49(47):10072-80. doi: 10.1021/bi100885v. Epub 2010 Nov 3.


Features of subunit NuoM (ND4) in Escherichia coli NDH-1: TOPOLOGY AND IMPLICATION OF CONSERVED GLU144 FOR COUPLING SITE 1.

Torres-Bacete J, Sinha PK, Castro-Guerrero N, Matsuno-Yagi A, Yagi T.

J Biol Chem. 2009 Nov 27;284(48):33062-9. doi: 10.1074/jbc.M109.059154. Epub 2009 Oct 8.


Critical roles of subunit NuoH (ND1) in the assembly of peripheral subunits with the membrane domain of Escherichia coli NDH-1.

Sinha PK, Torres-Bacete J, Nakamaru-Ogiso E, Castro-Guerrero N, Matsuno-Yagi A, Yagi T.

J Biol Chem. 2009 Apr 10;284(15):9814-23. doi: 10.1074/jbc.M809468200. Epub 2009 Feb 3.


Characterization of the NuoM (ND4) subunit in Escherichia coli NDH-1: conserved charged residues essential for energy-coupled activities.

Torres-Bacete J, Nakamaru-Ogiso E, Matsuno-Yagi A, Yagi T.

J Biol Chem. 2007 Dec 21;282(51):36914-22. Epub 2007 Oct 31.


Newly discovered penicillin acylase activity of aculeacin A acylase from Actinoplanes utahensis.

Torres-Bacete J, Hormigo D, Stuart M, Arroyo M, Torres P, Castillón MP, Acebal C, García JL, de la Mata I.

Appl Environ Microbiol. 2007 Aug;73(16):5378-81. Epub 2007 Jun 22.


Optimization of culture medium and conditions for penicillin acylase production by Streptomyces lavendulae ATCC 13664.

Torres-Bacete J, Arroyo M, Torres-Guzmán R, De La Mata I, Acebal C, Castillón MP.

Appl Biochem Biotechnol. 2005 Aug;126(2):119-32.


Substrate specificity of penicillin acylase from Streptomyces lavendulae.

Torres-Guzmán R, de la Mata I, Torres-Bacete J, Arroyo M, Castillón MP, Acebal C.

Biochem Biophys Res Commun. 2002 Mar 1;291(3):593-7.


Optimization of 6-aminopenicillanic acid (6-APA) production by using a new immobilized penicillin acylase.

Torres-Bacete J, Arroyo M, Torres-Guzmán R, de La Mata I, Castillón MP, Acebal C.

Biotechnol Appl Biochem. 2000 Dec;32(3):173-7.


Supplemental Content

Loading ...
Support Center