Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 51

1.

A continuous-time MaxSAT solver with high analog performance.

Molnár B, Molnár F, Varga M, Toroczkai Z, Ercsey-Ravasz M.

Nat Commun. 2018 Nov 19;9(1):4864. doi: 10.1038/s41467-018-07327-2.

2.

The Mouse Cortical Connectome, Characterized by an Ultra-Dense Cortical Graph, Maintains Specificity by Distinct Connectivity Profiles.

Gămănuţ R, Kennedy H, Toroczkai Z, Ercsey-Ravasz M, Van Essen DC, Knoblauch K, Burkhalter A.

Neuron. 2018 Feb 7;97(3):698-715.e10. doi: 10.1016/j.neuron.2017.12.037.

PMID:
29420935
3.

A multiscale cerebral neurochemical connectome of the rat brain.

Noori HR, Schöttler J, Ercsey-Ravasz M, Cosa-Linan A, Varga M, Toroczkai Z, Spanagel R.

PLoS Biol. 2017 Jul 3;15(7):e2002612. doi: 10.1371/journal.pbio.2002612. eCollection 2017 Jul.

4.

The Brain in Space.

Knoblauch K, Ercsey-Ravasz M, Kennedy H, Toroczkai Z.

In: Kennedy H, Van Essen DC, Christen Y, editors. Micro-, Meso- and Macro-Connectomics of the Brain [Internet]. Cham (CH): Springer; 2016.
2016 Mar 11.

5.

Spatial Embedding and Wiring Cost Constrain the Functional Layout of the Cortical Network of Rodents and Primates.

Horvát S, Gămănuț R, Ercsey-Ravasz M, Magrou L, Gămănuț B, Van Essen DC, Burkhalter A, Knoblauch K, Toroczkai Z, Kennedy H.

PLoS Biol. 2016 Jul 21;14(7):e1002512. doi: 10.1371/journal.pbio.1002512. eCollection 2016 Jul.

6.

Order-to-chaos transition in the hardness of random Boolean satisfiability problems.

Varga M, Sumi R, Toroczkai Z, Ercsey-Ravasz M.

Phys Rev E. 2016 May;93(5):052211. doi: 10.1103/PhysRevE.93.052211. Epub 2016 May 13.

PMID:
27300884
7.

Quantifying randomness in real networks.

Orsini C, Dankulov MM, Colomer-de-Simón P, Jamakovic A, Mahadevan P, Vahdat A, Bassler KE, Toroczkai Z, Boguñá M, Caldarelli G, Fortunato S, Krioukov D.

Nat Commun. 2015 Oct 20;6:8627. doi: 10.1038/ncomms9627.

8.

Reducing degeneracy in maximum entropy models of networks.

Horvát S, Czabarka É, Toroczkai Z.

Phys Rev Lett. 2015 Apr 17;114(15):158701. Epub 2015 Apr 14.

PMID:
25933345
9.

Predicting commuter flows in spatial networks using a radiation model based on temporal ranges.

Ren Y, Ercsey-Ravasz M, Wang P, González MC, Toroczkai Z.

Nat Commun. 2014 Nov 6;5:5347. doi: 10.1038/ncomms6347.

PMID:
25373437
10.

Cortical high-density counterstream architectures.

Markov NT, Ercsey-Ravasz M, Van Essen DC, Knoblauch K, Toroczkai Z, Kennedy H.

Science. 2013 Nov 1;342(6158):1238406. doi: 10.1126/science.1238406. Review.

11.

A predictive network model of cerebral cortical connectivity based on a distance rule.

Ercsey-Ravasz M, Markov NT, Lamy C, Van Essen DC, Knoblauch K, Toroczkai Z, Kennedy H.

Neuron. 2013 Oct 2;80(1):184-97. doi: 10.1016/j.neuron.2013.07.036. Epub 2013 Oct 2.

12.

Why data coherence and quality is critical for understanding interareal cortical networks.

Kennedy H, Knoblauch K, Toroczkai Z.

Neuroimage. 2013 Oct 15;80:37-45. doi: 10.1016/j.neuroimage.2013.04.031. Epub 2013 Apr 18. Review.

13.

The role of long-range connections on the specificity of the macaque interareal cortical network.

Markov NT, Ercsey-Ravasz M, Lamy C, Ribeiro Gomes AR, Magrou L, Misery P, Giroud P, Barone P, Dehay C, Toroczkai Z, Knoblauch K, Van Essen DC, Kennedy H.

Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5187-92. doi: 10.1073/pnas.1218972110. Epub 2013 Mar 11. Erratum in: Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):1761.

14.

The chaos within Sudoku.

Ercsey-Ravasz M, Toroczkai Z.

Sci Rep. 2012;2:725. doi: 10.1038/srep00725. Epub 2012 Oct 11.

15.

A weighted and directed interareal connectivity matrix for macaque cerebral cortex.

Markov NT, Ercsey-Ravasz MM, Ribeiro Gomes AR, Lamy C, Magrou L, Vezoli J, Misery P, Falchier A, Quilodran R, Gariel MA, Sallet J, Gamanut R, Huissoud C, Clavagnier S, Giroud P, Sappey-Marinier D, Barone P, Dehay C, Toroczkai Z, Knoblauch K, Van Essen DC, Kennedy H.

Cereb Cortex. 2014 Jan;24(1):17-36. doi: 10.1093/cercor/bhs270. Epub 2012 Sep 25.

16.

Range-limited centrality measures in complex networks.

Ercsey-Ravasz M, Lichtenwalter RN, Chawla NV, Toroczkai Z.

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 2):066103. Epub 2012 Jun 6.

PMID:
23005158
17.

Complexity of the international agro-food trade network and its impact on food safety.

Ercsey-Ravasz M, Toroczkai Z, Lakner Z, Baranyi J.

PLoS One. 2012;7(5):e37810. doi: 10.1371/journal.pone.0037810. Epub 2012 May 31. Erratum in: PLoS One. 2012;7(10). doi:10.1371/annotation/5fe23e20-573f-48d7-b284-4fa0106b8c42.

18.

Weight consistency specifies regularities of macaque cortical networks.

Markov NT, Misery P, Falchier A, Lamy C, Vezoli J, Quilodran R, Gariel MA, Giroud P, Ercsey-Ravasz M, Pilaz LJ, Huissoud C, Barone P, Dehay C, Toroczkai Z, Van Essen DC, Kennedy H, Knoblauch K.

Cereb Cortex. 2011 Jun;21(6):1254-72. doi: 10.1093/cercor/bhq201. Epub 2010 Nov 2.

19.

Centrality scaling in large networks.

Ercsey-Ravasz M, Toroczkai Z.

Phys Rev Lett. 2010 Jul 16;105(3):038701. Epub 2010 Jul 16.

PMID:
20867816
20.

Efficient and exact sampling of simple graphs with given arbitrary degree sequence.

Del Genio CI, Kim H, Toroczkai Z, Bassler KE.

PLoS One. 2010 Apr 8;5(4):e10012. doi: 10.1371/journal.pone.0010012.

21.

Extreme fluctuations in noisy task-completion landscapes on scale-free networks.

Guclu H, Korniss G, Toroczkai Z.

Chaos. 2007 Jun;17(2):026104.

PMID:
17614691
22.

Introduction: optimization in networks.

Motter AE, Toroczkai Z.

Chaos. 2007 Jun;17(2):026101.

PMID:
17614688
23.

Structural bottlenecks for communication in networks.

Sreenivasan S, Cohen R, López E, Toroczkai Z, Stanley HE.

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Mar;75(3 Pt 2):036105. Epub 2007 Mar 5.

PMID:
17500757
24.

Congestion-gradient driven transport on complex networks.

Danila B, Yu Y, Earl S, Marsh JA, Toroczkai Z, Bassler KE.

Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Oct;74(4 Pt 2):046114. Epub 2006 Oct 19.

PMID:
17155140
25.

Synchronization landscapes in small-world-connected computer networks.

Guclu H, Korniss G, Novotny MA, Toroczkai Z, Rácz Z.

Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jun;73(6 Pt 2):066115. Epub 2006 Jun 13.

PMID:
16906922
26.

Modelling disease outbreaks in realistic urban social networks.

Eubank S, Guclu H, Kumar VS, Marathe MV, Srinivasan A, Toroczkai Z, Wang N.

Nature. 2004 May 13;429(6988):180-4.

PMID:
15141212
27.

Network dynamics: jamming is limited in scale-free systems.

Toroczkai Z, Bassler KE.

Nature. 2004 Apr 15;428(6984):716.

PMID:
15085122
28.

Universality in active chaos.

Tél T, Nishikawa T, Motter AE, Grebogi C, Toroczkai Z.

Chaos. 2004 Mar;14(1):72-8.

PMID:
15003046
29.

Competition-driven network dynamics: emergence of a scale-free leadership structure and collective efficiency.

Anghel M, Toroczkai Z, Bassler KE, Korniss G.

Phys Rev Lett. 2004 Feb 6;92(5):058701. Epub 2004 Feb 6.

PMID:
14995348
30.

Spatial models of prebiotic evolution: soup before pizza?

Scheuring I, Czárán T, Szabó P, Károlyi G, Toroczkai Z.

Orig Life Evol Biosph. 2003 Oct;33(4-5):319-55. Review.

PMID:
14604181
31.

Autocatalytic reactions of phase distributed active particles.

Santoboni G, Nishikawa T, Toroczkai Z, Grebogi C.

Chaos. 2002 Jun;12(2):408-416.

PMID:
12779571
32.

Introduction: Active chaotic flow.

Toroczkai Z, Tel T.

Chaos. 2002 Jun;12(2):372. No abstract available.

PMID:
12779566
33.

Chaotic advection, diffusion, and reactions in open flows.

Tel T, Karolyi G, Pentek A, Scheuring I, Toroczkai Z, Grebogi C, Kadtke J.

Chaos. 2000 Mar;10(1):89-98.

PMID:
12779365
34.

Estimation of entropies and dimensions by nonlinear symbolic time series analysis.

Finn JM, Goettee JD, Toroczkai Z, Anghel M, Wood BP.

Chaos. 2003 Jun;13(2):444-56.

PMID:
12777107
35.

Advection of finite-size particles in open flows.

Benczik IJ, Toroczkai Z, Tél T.

Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 2):036303. Epub 2003 Mar 21.

PMID:
12689161
36.

Competing populations in flows with chaotic mixing.

Scheuring I, Károlyi G, Toroczkai Z, Tél T, Péntek A.

Theor Popul Biol. 2003 Mar;63(2):77-90.

PMID:
12615492
37.

Suppressing roughness of virtual times in parallel discrete-event simulations.

Korniss G, Novotny MA, Guclu H, Toroczkai Z, Rikvold PA.

Science. 2003 Jan 31;299(5607):677-9.

38.

Selective sensitivity of open chaotic flows on inertial tracer advection: catching particles with a stick.

Benczik IJ, Toroczkai Z, Tél T.

Phys Rev Lett. 2002 Oct 14;89(16):164501. Epub 2002 Sep 25.

PMID:
12398726
39.

Sign-time distributions for interface growth.

Toroczkai Z, Newman TJ, Das Sarma S.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Aug;60(2 Pt A):R1115-8.

PMID:
11969931
40.

Chemical or biological activity in open chaotic flows.

Károlyi G, Péntek A, Toroczkai Z, Tél T, Grebogi C.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 May;59(5 Pt B):5468-81.

PMID:
11969526
41.

Universality class of discrete solid-on-solid limited mobility nonequilibrium growth models for kinetic surface roughening.

Das Sarma S, Punyindu Chatraphorn P, Toroczkai Z.

Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Mar;65(3 Pt 2A):036144. Epub 2002 Mar 7.

PMID:
11909202
42.

Finite-size effects on active chaotic advection.

Nishikawa T, Toroczkai Z, Grebogi C, Tél T.

Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Feb;65(2 Pt 2):026216. Epub 2002 Jan 24.

PMID:
11863641
43.

Topological classification of binary trees using the Horton-Strahler index.

Toroczkai Z.

Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jan;65(1 Pt 2):016130. Epub 2001 Dec 20.

PMID:
11800759
44.

Comment on "extremal-point densities of interface fluctuations in a quenched random medium".

Toroczkai Z, Korniss G.

Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Oct;64(4 Pt 2):048101. Epub 2001 Sep 21.

PMID:
11690187
45.

Advective coalescence in chaotic flows.

Nishikawa T, Toroczkai Z, Grebogi C.

Phys Rev Lett. 2001 Jul 16;87(3):038301. Epub 2001 Jun 29.

PMID:
11461595
46.

Chaotic flow: the physics of species coexistence.

Károlyi G, Péntek A, Scheuring I, Tél T, Toroczkai Z.

Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13661-5.

47.

Extremal-point densities of interface fluctuations

Toroczkai Z, Korniss G, Das Sarma S, Zia RK.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jul;62(1 Pt A):276-94.

PMID:
11088461
48.

From massively parallel algorithms and fluctuating time horizons to nonequilibrium surface growth

Korniss G, Toroczkai Z, Novotny MA, Rikvold PA.

Phys Rev Lett. 2000 Feb 7;84(6):1351-4.

PMID:
11017516
49.

Fractal boundaries in open hydrodynamical flows: Signatures of chaotic saddles.

Péntek Á, Toroczkai Z, Tél T, Grebogi C, Yorke JA.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 May;51(5):4076-4088. No abstract available.

PMID:
9963118
50.

Kac model from a dynamical system's point of view.

Péntek Á, Toroczkai Z, Mayer DH, Tél T.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Mar;49(3):2026-2040. No abstract available.

PMID:
9961443

Supplemental Content

Loading ...
Support Center