Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 40

1.

Deficiency of Selected Cathepsins Does Not Affect the Inhibitory Action of ECTV on Immune Properties of Dendritic Cells.

Bossowska-Nowicka M, Mielcarska MB, Struzik J, Jackowska-Tracz A, Tracz M, Gregorczyk-Zboroch KP, Gieryńska M, Toka FN, Szulc-Dąbrowska L.

Immunol Invest. 2019 Jun 26:1-17. doi: 10.1080/08820139.2019.1631843. [Epub ahead of print]

PMID:
31240969
2.

Syk and Hrs Regulate TLR3-Mediated Antiviral Response in Murine Astrocytes.

Mielcarska MB, Bossowska-Nowicka M, Gregorczyk-Zboroch KP, Wyżewski Z, Szulc-Dąbrowska L, Gieryńska M, Toka FN.

Oxid Med Cell Longev. 2019 Apr 4;2019:6927380. doi: 10.1155/2019/6927380. eCollection 2019.

3.

Ectromelia virus suppresses expression of cathepsins and cystatins in conventional dendritic cells to efficiently execute the replication process.

Bossowska-Nowicka M, Mielcarska MB, Romaniewicz M, Kaczmarek MM, Gregorczyk-Zboroch KP, Struzik J, Grodzik M, Gieryńska MM, Toka FN, Szulc-Dąbrowska L.

BMC Microbiol. 2019 May 10;19(1):92. doi: 10.1186/s12866-019-1471-1.

4.

ECTV Abolishes the Ability of GM-BM Cells to Stimulate Allogeneic CD4 T Cells in a Mouse Strain-Independent Manner.

Szulc-Dąbrowska L, Wojtyniak P, Struzik J, Toka FN, Winnicka A, Gieryńska M.

Immunol Invest. 2019 May;48(4):392-409. doi: 10.1080/08820139.2019.1569676. Epub 2019 Mar 19.

PMID:
30884992
5.

Long actin-based cellular protrusions as novel evidence of the cytopathic effect induced in immune cells infected by the ectromelia virus.

Szulc-Dąbrowska L, Gregorczyk-Zboroch KP, Struzik J, Wyżewski Z, Ostrowska A, Toka FN, Gieryńska M.

Cent Eur J Immunol. 2018;43(4):363-370. doi: 10.5114/ceji.2018.81352. Epub 2018 Dec 31.

6.

Bacterial and viral pathogen-associated molecular patterns induce divergent early transcriptomic landscapes in a bovine macrophage cell line.

Toka FN, Dunaway K, Smaltz F, Szulc-Dąbrowska L, Drnevich J, Mielcarska MB, Bossowska-Nowicka M, Schweizer M.

BMC Genomics. 2019 Jan 8;20(1):15. doi: 10.1186/s12864-018-5411-5.

7.

Ectromelia virus induces tubulin cytoskeletal rearrangement in immune cells accompanied by a loss of the microtubule organizing center and increased α-tubulin acetylation.

Szulc-Dąbrowska L, Palusiński M, Struzik J, Gregorczyk-Zboroch KP, Toka FN, Schollenberger A, Gieryńska M.

Arch Virol. 2019 Feb;164(2):559-565. doi: 10.1007/s00705-018-4030-4. Epub 2018 Oct 29.

8.

Ectromelia Virus Affects Mitochondrial Network Morphology, Distribution, and Physiology in Murine Fibroblasts and Macrophage Cell Line.

Gregorczyk KP, Wyżewski Z, Szczepanowska J, Toka FN, Mielcarska MB, Bossowska-Nowicka M, Gieryńska M, Boratyńska-Jasińska A, Struzik J, Niemiałtowski MG, Szulc-Dąbrowska L.

Viruses. 2018 May 16;10(5). pii: E266. doi: 10.3390/v10050266.

9.

The in Vitro Inhibitory Effect of Ectromelia Virus Infection on Innate and Adaptive Immune Properties of GM-CSF-Derived Bone Marrow Cells Is Mouse Strain-Independent.

Szulc-Dąbrowska L, Struzik J, Cymerys J, Winnicka A, Nowak Z, Toka FN, Gieryńska M.

Front Microbiol. 2017 Dec 19;8:2539. doi: 10.3389/fmicb.2017.02539. eCollection 2017.

10.

Functional failure of TLR3 and its signaling components contribute to herpes simplex encephalitis.

Mielcarska MB, Bossowska-Nowicka M, Toka FN.

J Neuroimmunol. 2018 Mar 15;316:65-73. doi: 10.1016/j.jneuroim.2017.12.011. Epub 2017 Dec 18. Review.

11.

Functional paralysis of GM-CSF-derived bone marrow cells productively infected with ectromelia virus.

Szulc-Dąbrowska L, Struzik J, Ostrowska A, Guzera M, Toka FN, Bossowska-Nowicka M, Gieryńska MM, Winnicka A, Nowak Z, Niemiałtowski MG.

PLoS One. 2017 Jun 12;12(6):e0179166. doi: 10.1371/journal.pone.0179166. eCollection 2017.

12.

Innate Immune Gene Transcript Level Associated with the Infection of Macrophages with Ectromelia Virus in Two Different Mouse Strains.

Dolega P, Szulc-Dąbrowska L, Bossowska M, Mielcarska M, Nowak Z, Toka FN.

Viral Immunol. 2017 Jun;30(5):315-329. doi: 10.1089/vim.2016.0173. Epub 2017 Apr 28.

PMID:
28453414
13.

Remodeling of the fibroblast cytoskeletal architecture during the replication cycle of Ectromelia virus: A morphological in vitro study in a murine cell line.

Szulc-Dabrowska L, Gregorczyk KP, Struzik J, Boratynska-Jasinska A, Szczepanowska J, Wyzewski Z, Toka FN, Gierynska M, Ostrowska A, Niemialtowski MG.

Cytoskeleton (Hoboken). 2016 Aug;73(8):396-417. doi: 10.1002/cm.21308. Epub 2016 May 30.

PMID:
27169394
14.

[Th17 lymphocytes in bacterial infections].

Szulc-Dąbrowska L, Gieryńska M, Depczyńska D, Schollenberger A, Toka FN.

Postepy Hig Med Dosw (Online). 2015 Apr 3;69:398-417. Review. Polish.

15.

Infection with foot-and-mouth disease virus (FMDV) induces a natural killer (NK) cell response in cattle that is lacking following vaccination.

Patch JR, Dar PA, Waters R, Toka FN, Barrera J, Schutta C, Kondabattula G, Golde WT.

Comp Immunol Microbiol Infect Dis. 2014 Sep;37(4):249-57. doi: 10.1016/j.cimid.2014.07.004. Epub 2014 Aug 12.

PMID:
25150134
16.

Cell mediated innate responses of cattle and swine are diverse during foot-and-mouth disease virus (FMDV) infection: a unique landscape of innate immunity.

Toka FN, Golde WT.

Immunol Lett. 2013 May;152(2):135-43. doi: 10.1016/j.imlet.2013.05.007. Epub 2013 May 30. Review.

PMID:
23727070
17.

Rapid and transient activation of γδ T cells to IFN-γ production, NK cell-like killing, and antigen processing during acute virus infection.

Toka FN, Kenney MA, Golde WT.

J Immunol. 2011 Apr 15;186(8):4853-61. doi: 10.4049/jimmunol.1003599. Epub 2011 Mar 7.

18.

Induction of foot-and-mouth disease virus-specific cytotoxic T cell killing by vaccination.

Patch JR, Pedersen LE, Toka FN, Moraes M, Grubman MJ, Nielsen M, Jungersen G, Buus S, Golde WT.

Clin Vaccine Immunol. 2011 Feb;18(2):280-8. doi: 10.1128/CVI.00417-10. Epub 2010 Dec 22.

19.

Letter to the editor. Loss of plasmacytoid dendritic cell function coincides with lymphopenia and viremia during foot-and-mouth disease virus infection.

Nfon CK, Toka FN, Kenney M, Pacheco JM, Golde WT.

Viral Immunol. 2010 Jun;23(3):339. doi: 10.1089/vim.2010.let23.3. No abstract available.

PMID:
20565298
20.

Loss of plasmacytoid dendritic cell function coincides with lymphopenia and viremia during foot-and-mouth disease virus infection.

Nfon CK, Toka FN, Kenney M, Pacheco JM, Golde WT.

Viral Immunol. 2010 Feb;23(1):29-41. doi: 10.1089/vim.2009.0078. Erratum in: Viral Immunol. 2010 Jun;23(3):339.

PMID:
20121400
21.

Natural killer cell dysfunction during acute infection with foot-and-mouth disease virus.

Toka FN, Nfon C, Dawson H, Golde WT.

Clin Vaccine Immunol. 2009 Dec;16(12):1738-49. doi: 10.1128/CVI.00280-09. Epub 2009 Oct 14.

22.

Accessory-cell-mediated activation of porcine NK cells by toll-like receptor 7 (TLR7) and TLR8 agonists.

Toka FN, Nfon CK, Dawson H, Golde WT.

Clin Vaccine Immunol. 2009 Jun;16(6):866-78. doi: 10.1128/CVI.00035-09. Epub 2009 Apr 15.

23.

Activation of porcine natural killer cells and lysis of foot-and-mouth disease virus infected cells.

Toka FN, Nfon CK, Dawson H, Estes DM, Golde WT.

J Interferon Cytokine Res. 2009 Mar;29(3):179-92. doi: 10.1089/jir.2008.0058.

PMID:
19196070
24.

Immune evasion during foot-and-mouth disease virus infection of swine.

Golde WT, Nfon CK, Toka FN.

Immunol Rev. 2008 Oct;225:85-95. doi: 10.1111/j.1600-065X.2008.00672.x. Review.

PMID:
18837777
25.

Langerhans cells in porcine skin.

Nfon CK, Dawson H, Toka FN, Golde WT.

Vet Immunol Immunopathol. 2008 Dec 15;126(3-4):236-47. doi: 10.1016/j.vetimm.2008.07.012. Epub 2008 Aug 3.

PMID:
18805593
26.

Interferon-alpha production by swine dendritic cells is inhibited during acute infection with foot-and-mouth disease virus.

Nfon CK, Ferman GS, Toka FN, Gregg DA, Golde WT.

Viral Immunol. 2008 Mar;21(1):68-77. doi: 10.1089/vim.2007.0097.

PMID:
18355124
27.

Mucosal application of plasmid-encoded IL-15 sustains a highly protective anti-Herpes simplex virus immunity.

Toka FN, Rouse BT.

J Leukoc Biol. 2005 Jul;78(1):178-86. Epub 2005 Apr 7.

PMID:
15817700
28.

Rescue of memory CD8+ T cell reactivity in peptide/TLR9 ligand immunization by codelivery of cytokines or CD40 ligation.

Toka FN, Gieryńska M, Suvas S, Schoenberger SP, Rouse BT.

Virology. 2005 Jan 5;331(1):151-8.

30.

Molecular adjuvants for mucosal immunity.

Toka FN, Pack CD, Rouse BT.

Immunol Rev. 2004 Jun;199:100-12. Review.

PMID:
15233729
32.
33.

Homing studies on distribution of ectromelia (mousepox) virus-specific T cells adoptively transferred into syngeneic H-2d mice: paradigm of lymphocyte migration.

Gieryńska M, Toka FN, Cespedes IS, Schollenberger A, Malicka E, Popis A, Niemiałtowski MG.

Viral Immunol. 2000;13(1):107-23.

PMID:
10733173
34.

Orthopoxviruses and Their Immune Escape.

Niemialtowski MG, Toka FN, Malicka E, Spohr de Faundez I, Gieryńska M, Schollenberger A.

Rev Med Virol. 1997 Apr;7(1):35-47. No abstract available.

PMID:
10398468
35.

Cytotoxic T lymphocyte control during ectromelia (mousepox) virus infection: interaction between MHC-restricted cells analyzed by non-radioactive fluorometry.

Toka FN, Niemiałtowski MG, Spohr de Faundez I, Gieryńska M.

Acta Virol. 1996 Nov-Dec;40(5-6):239-44.

PMID:
9171450
36.

Controlling orthopoxvirus infections--200 years after Jenner's revolutionary immunization.

Niemiałtowski MG, Toka FN, Malicka E, Gieryńska, Spohr de Faundez I, Schollenberger A.

Arch Immunol Ther Exp (Warsz). 1996;44(5-6):373-8. Review.

PMID:
9017154
37.

Present status of classification of viruses of vertebrates.

Malicki K, Toka FN.

Arch Immunol Ther Exp (Warsz). 1996;44(5-6):283-9. Review.

PMID:
9017141
38.

The cytosolic free Ca2+ in ectromelia (mousepox) virus stimulated cytotoxic T lymphocytes.

Toka FN, De Faundez IS, Gierynska M, Niemiałtowski MG.

Viral Immunol. 1996;9(3):159-167.

PMID:
8890474
39.
40.

The inflammatory and immune response to mousepox (infectious ectromelia) virus.

Niemiałtowski MG, Spohr de Faundez I, Gieryńska M, Malicka E, Toka FN, Schollenberger A, Popis A.

Acta Virol. 1994 Oct;38(5):299-307. Review.

PMID:
7726007

Supplemental Content

Support Center