Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 186

1.

Novel biosynthetic pathway for sulfur amino acids in Cryptococcus neoformans.

Toh-E A, Ohkusu M, Shimizu K, Ishiwada N, Watanabe A, Kamei K.

Curr Genet. 2018 Jun;64(3):681-696. doi: 10.1007/s00294-017-0783-7. Epub 2017 Nov 20.

PMID:
29159425
2.

Creation, characterization and utilization of Cryptococcus neoformans mutants sensitive to micafungin.

Toh-E A, Ohkusu M, Shimizu K, Yamaguchi M, Ishiwada N, Watanabe A, Kamei K.

Curr Genet. 2017 Dec;63(6):1093-1104. doi: 10.1007/s00294-017-0713-8. Epub 2017 May 30.

PMID:
28560585
3.

Putative orotate transporter of Cryptococcus neoformans, Oat1, is a member of the NCS1/PRT transporter super family and its loss causes attenuation of virulence.

Toh-E A, Ohkusu M, Shimizu K, Takahashi-Nakaguchi A, Kawamoto S, Ishiwada N, Watanabe A, Kamei K.

Curr Genet. 2017 Aug;63(4):697-707. doi: 10.1007/s00294-016-0672-5. Epub 2016 Dec 23.

PMID:
28011993
4.

Local Anesthetics and Antipsychotic Phenothiazines Interact Nonspecifically with Membranes and Inhibit Hexose Transporters in Yeast.

Uesono Y, Toh-e A, Kikuchi Y, Araki T, Hachiya T, Watanabe CK, Noguchi K, Terashima I.

Genetics. 2016 Mar;202(3):997-1012. doi: 10.1534/genetics.115.183806. Epub 2016 Jan 12.

5.

Identification of genes involved in the phosphate metabolism in Cryptococcus neoformans.

Toh-e A, Ohkusu M, Li HM, Shimizu K, Takahashi-Nakaguchi A, Gonoi T, Kawamoto S, Kanesaki Y, Yoshikawa H, Nishizawa M.

Fungal Genet Biol. 2015 Jul;80:19-30. doi: 10.1016/j.fgb.2015.04.019. Epub 2015 May 5.

PMID:
25957252
6.

Positional cloning in Cryptococcus neoformans and its application for identification and cloning of the gene encoding methylenetetrahydrofolate reductase.

Toh-E A, Ohkusu M, Shimizu K, Kawamoto S.

Fungal Genet Biol. 2015 Mar;76:70-7. doi: 10.1016/j.fgb.2015.02.007. Epub 2015 Feb 14.

PMID:
25687932
7.

Tetracaine, a local anesthetic, preferentially induces translational inhibition with processing body formation rather than phosphorylation of eIF2α in yeast.

Araki T, Toh-e A, Kikuchi Y, Watanabe CK, Hachiya T, Noguchi K, Terashima I, Uesono Y.

Curr Genet. 2015 Feb;61(1):43-53. doi: 10.1007/s00294-014-0443-0. Epub 2014 Aug 15.

PMID:
25119673
8.

Comparison of cognitive and UHDRS measures in monitoring disease progression in Huntington's disease: a 12-month longitudinal study.

Toh EA, MacAskill MR, Dalrymple-Alford JC, Myall DJ, Livingston L, Macleod SA, Anderson TJ.

Transl Neurodegener. 2014 Jul 12;3:15. doi: 10.1186/2047-9158-3-15. eCollection 2014.

9.

Functional characterization of PMT2, encoding a protein-O-mannosyltransferase, in the human pathogen Cryptococcus neoformans.

Shimizu K, Imanishi Y, Toh-e A, Uno J, Chibana H, Hull CM, Kawamoto S.

Fungal Genet Biol. 2014 Aug;69:13-22. doi: 10.1016/j.fgb.2014.05.007. Epub 2014 Jun 2.

PMID:
24892554
10.

Heterologous expression of a gene of Magnaporthe oryzae chrysovirus 1 strain A disrupts growth of the human pathogenic fungus Cryptococcus neoformans.

Urayama S, Fukuhara T, Moriyama H, Toh-E A, Kawamoto S.

Microbiol Immunol. 2014 May;58(5):294-302. doi: 10.1111/1348-0421.12148.

11.

Quantitative live-cell imaging reveals spatio-temporal dynamics and cytoplasmic assembly of the 26S proteasome.

Pack CG, Yukii H, Toh-e A, Kudo T, Tsuchiya H, Kaiho A, Sakata E, Murata S, Yokosawa H, Sako Y, Baumeister W, Tanaka K, Saeki Y.

Nat Commun. 2014 Mar 6;5:3396. doi: 10.1038/ncomms4396.

PMID:
24598877
12.

[Phosphate regulation in Cryptococcus neoformans].

Toh-e A, Shimizu K, Li HM, Nishizawa M, Kawamoto S.

Med Mycol J. 2011;52(1):19-23. Review. Japanese. No abstract available.

13.

Structural analysis of compounds with actions similar to local anesthetics and antipsychotic phenothiazines in yeast.

Uesono Y, Toh-E A, Kikuchi Y, Terashima I.

Yeast. 2011 May;28(5):391-404. doi: 10.1002/yea.1846. Epub 2011 Mar 4.

14.

Dissection of the assembly pathway of the proteasome lid in Saccharomyces cerevisiae.

Fukunaga K, Kudo T, Toh-e A, Tanaka K, Saeki Y.

Biochem Biophys Res Commun. 2010 Jun 11;396(4):1048-53. doi: 10.1016/j.bbrc.2010.05.061. Epub 2010 May 21.

PMID:
20471955
15.

Pho85 kinase, a cyclin-dependent kinase, regulates nuclear accumulation of the Rim101 transcription factor in the stress response of Saccharomyces cerevisiae.

Nishizawa M, Tanigawa M, Hayashi M, Maeda T, Yazaki Y, Saeki Y, Toh-e A.

Eukaryot Cell. 2010 Jun;9(6):943-51. doi: 10.1128/EC.00247-09. Epub 2010 Apr 9.

16.

Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle.

Saeki Y, Toh-E A, Kudo T, Kawamura H, Tanaka K.

Cell. 2009 May 29;137(5):900-13. doi: 10.1016/j.cell.2009.05.005. Epub 2009 May 14.

17.

Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome.

Saeki Y, Kudo T, Sone T, Kikuchi Y, Yokosawa H, Toh-e A, Tanaka K.

EMBO J. 2009 Feb 18;28(4):359-71. doi: 10.1038/emboj.2008.305. Epub 2009 Jan 15.

18.

Nutrient-regulated antisense and intragenic RNAs modulate a signal transduction pathway in yeast.

Nishizawa M, Komai T, Katou Y, Shirahige K, Ito T, Toh-E A.

PLoS Biol. 2008 Dec 23;6(12):2817-30. doi: 10.1371/journal.pbio.0060326.

19.
20.

Transcriptional repression by the Pho4 transcription factor controls the timing of SNZ1 expression.

Nishizawa M, Komai T, Morohashi N, Shimizu M, Toh-e A.

Eukaryot Cell. 2008 Jun;7(6):949-57. doi: 10.1128/EC.00366-07. Epub 2008 Apr 11.

21.

26S proteasome regulatory particle mutants have increased oxidative stress tolerance.

Kurepa J, Toh-E A, Smalle JA.

Plant J. 2008 Jan;53(1):102-14. Epub 2007 Oct 27.

22.

Shs1 plays separable roles in septin organization and cytokinesis in Saccharomyces cerevisiae.

Iwase M, Luo J, Bi E, Toh-e A.

Genetics. 2007 Sep;177(1):215-29. Epub 2007 Jul 1.

23.

The assembly pathway of the 19S regulatory particle of the yeast 26S proteasome.

Isono E, Nishihara K, Saeki Y, Yashiroda H, Kamata N, Ge L, Ueda T, Kikuchi Y, Tanaka K, Nakano A, Toh-e A.

Mol Biol Cell. 2007 Feb;18(2):569-80. Epub 2006 Nov 29.

24.
25.

Identifying novel substrates for mouse Cdk5 kinase using the yeast Saccharomyces cerevisiae.

Horiuchi Y, Asada A, Hisanaga S, Toh-e A, Nishizawa M.

Genes Cells. 2006 Dec;11(12):1393-404.

26.

[Biogenesis of the 26S proteasome in the yeast Saccharomyces cerevisiae].

Isono E, Toh-e A.

Tanpakushitsu Kakusan Koso. 2006 Aug;51(10 Suppl):1224-9. Review. Japanese. No abstract available.

PMID:
16922378
28.
29.

Knocking out ubiquitin proteasome system function in vivo and in vitro with genetically encodable tandem ubiquitin.

Saeki Y, Isono E, Shimada M, Kawahara H, Yokosawa H, Toh-E A.

Methods Enzymol. 2005;399:64-74.

PMID:
16338349
30.

Functional analysis of Rpn6p, a lid component of the 26 S proteasome, using temperature-sensitive rpn6 mutants of the yeast Saccharomyces cerevisiae.

Isono E, Saito N, Kamata N, Saeki Y, Toh-E A.

J Biol Chem. 2005 Feb 25;280(8):6537-47. Epub 2004 Dec 15.

31.

Forchlorfenuron, a phenylurea cytokinin, disturbs septin organization in Saccharomyces cerevisiae.

Iwase M, Okada S, Oguchi T, Toh-e A.

Genes Genet Syst. 2004 Aug;79(4):199-206.

32.

Yeast Pho85 kinase is required for proper gene expression during the diauxic shift.

Nishizawa M, Katou Y, Shirahige K, Toh-e A.

Yeast. 2004 Aug;21(11):903-18.

33.

Definitive evidence for Ufd2-catalyzed elongation of the ubiquitin chain through Lys48 linkage.

Saeki Y, Tayama Y, Toh-e A, Yokosawa H.

Biochem Biophys Res Commun. 2004 Jul 30;320(3):840-5.

PMID:
15240124
34.

Intracellularly inducible, ubiquitin hydrolase-insensitive tandem ubiquitins inhibit the 26S proteasome activity and cell division.

Saeki Y, Isono E, Oguchi T, Shimada M, Sone T, Kawahara H, Yokosawa H, Toh-e A.

Genes Genet Syst. 2004 Apr;79(2):77-86.

35.

Mmr1p is a mitochondrial factor for Myo2p-dependent inheritance of mitochondria in the budding yeast.

Itoh T, Toh-E A, Matsui Y.

EMBO J. 2004 Jul 7;23(13):2520-30. Epub 2004 Jun 17.

36.

Sem1p is a novel subunit of the 26 S proteasome from Saccharomyces cerevisiae.

Sone T, Saeki Y, Toh-e A, Yokosawa H.

J Biol Chem. 2004 Jul 2;279(27):28807-16. Epub 2004 Apr 26.

37.
38.

Rpn7 Is required for the structural integrity of the 26 S proteasome of Saccharomyces cerevisiae.

Isono E, Saeki Y, Yokosawa H, Toh-e A.

J Biol Chem. 2004 Jun 25;279(26):27168-76. Epub 2004 Apr 21.

39.
40.
41.

Rsp5-Bul1/2 complex is necessary for the HSE-mediated gene expression in budding yeast.

Kaida D, Toh-e A, Kikuchi Y.

Biochem Biophys Res Commun. 2003 Jul 11;306(4):1037-41.

PMID:
12821147
42.

Ras recruits mitotic exit regulator Lte1 to the bud cortex in budding yeast.

Yoshida S, Ichihashi R, Toh-e A.

J Cell Biol. 2003 Jun 9;161(5):889-97. Epub 2003 Jun 2.

43.

Comparative analysis of yeast PIAS-type SUMO ligases in vivo and in vitro.

Takahashi Y, Toh-E A, Kikuchi Y.

J Biochem. 2003 Apr;133(4):415-22.

46.

Structure and function of cyclin-dependent Pho85 kinase of Saccharomyces cerevisiae.

Toh-E A, Nishizawa M.

J Gen Appl Microbiol. 2001 Jun;47(3):107-117.

48.

The small GTPase Rho3 and the diaphanous/formin For3 function in polarized cell growth in fission yeast.

Nakano K, Imai J, Arai R, Toh-E A, Matsui Y, Mabuchi I.

J Cell Sci. 2002 Dec 1;115(Pt 23):4629-39.

50.

Identification of ubiquitin-like protein-binding subunits of the 26S proteasome.

Saeki Y, Sone T, Toh-e A, Yokosawa H.

Biochem Biophys Res Commun. 2002 Aug 30;296(4):813-9.

PMID:
12200120

Supplemental Content

Loading ...
Support Center