Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 155

1.

Perspective: Dynamics of confined liquids.

Thompson WH.

J Chem Phys. 2018 Nov 7;149(17):170901. doi: 10.1063/1.5057759.

PMID:
30408973
2.

The activation energy for water reorientation differs between IR pump-probe and NMR measurements.

Piskulich ZA, Thompson WH.

J Chem Phys. 2018 Oct 28;149(16):164504. doi: 10.1063/1.5050203.

PMID:
30384705
3.

Origins, and formulation implications, of the pKa difference between boronic acids and their esters: A density functional theory study.

Lopalco A, Stella VJ, Thompson WH.

Eur J Pharm Sci. 2018 Nov 1;124:10-16. doi: 10.1016/j.ejps.2018.08.017. Epub 2018 Aug 14.

PMID:
30118849
4.

From static to temporal network theory: Applications to functional brain connectivity.

Thompson WH, Brantefors P, Fransson P.

Netw Neurosci. 2017 Jun 1;1(2):69-99. doi: 10.1162/NETN_a_00011. eCollection 2017 Spring.

5.

Simulations to benchmark time-varying connectivity methods for fMRI.

Thompson WH, Richter CG, Plavén-Sigray P, Fransson P.

PLoS Comput Biol. 2018 May 29;14(5):e1006196. doi: 10.1371/journal.pcbi.1006196. eCollection 2018 May.

6.

Brain network segregation and integration during an epoch-related working memory fMRI experiment.

Fransson P, Schiffler BC, Thompson WH.

Neuroimage. 2018 Sep;178:147-161. doi: 10.1016/j.neuroimage.2018.05.040. Epub 2018 May 17.

7.

Expanding the calculation of activation volumes: Self-diffusion in liquid water.

Piskulich ZA, Mesele OO, Thompson WH.

J Chem Phys. 2018 Apr 7;148(13):134105. doi: 10.1063/1.5023420.

PMID:
29626912
8.

A common framework for the problem of deriving estimates of dynamic functional brain connectivity.

Thompson WH, Fransson P.

Neuroimage. 2018 May 15;172:896-902. doi: 10.1016/j.neuroimage.2017.12.057. Epub 2017 Dec 30.

9.

Removing the barrier to the calculation of activation energies: Diffusion coefficients and reorientation times in liquid water.

Piskulich ZA, Mesele OO, Thompson WH.

J Chem Phys. 2017 Oct 7;147(13):134103. doi: 10.1063/1.4997723.

PMID:
28987106
10.

The readability of scientific texts is decreasing over time.

Plavén-Sigray P, Matheson GJ, Schiffler BC, Thompson WH.

Elife. 2017 Sep 5;6. pii: e27725. doi: 10.7554/eLife.27725.

11.

A "Universal" Spectroscopic Map for the OH Stretching Mode in Alcohols.

Mesele OO, Thompson WH.

J Phys Chem A. 2017 Aug 10;121(31):5823-5833. doi: 10.1021/acs.jpca.7b05836. Epub 2017 Aug 2.

PMID:
28715218
12.

Water-anion hydrogen bonding dynamics: Ultrafast IR experiments and simulations.

Yamada SA, Thompson WH, Fayer MD.

J Chem Phys. 2017 Jun 21;146(23):234501. doi: 10.1063/1.4984766.

PMID:
28641416
13.

Top-Down Beta Enhances Bottom-Up Gamma.

Richter CG, Thompson WH, Bosman CA, Fries P.

J Neurosci. 2017 Jul 12;37(28):6698-6711. doi: 10.1523/JNEUROSCI.3771-16.2017. Epub 2017 Jun 7.

14.

Tests for, origins of, and corrections to non-Gaussian statistics. The dipole-flip model.

Schile AJ, Thompson WH.

J Chem Phys. 2017 Apr 21;146(15):154109. doi: 10.1063/1.4981009.

PMID:
28433019
15.
16.

Hydroxyacetone Production From C3 Criegee Intermediates.

Taatjes CA, Liu F, Rotavera B, Kumar M, Caravan R, Osborn DL, Thompson WH, Lester MI.

J Phys Chem A. 2017 Jan 12;121(1):16-23. doi: 10.1021/acs.jpca.6b07712. Epub 2016 Dec 30.

PMID:
28001404
17.

Functional resting-state fMRI connectivity correlates with serum levels of the S100B protein in the acute phase of traumatic brain injury.

Thompson WH, Thelin EP, Lilja A, Bellander BM, Fransson P.

Neuroimage Clin. 2016 May 9;12:1004-1012. eCollection 2016.

18.
19.

On Stabilizing the Variance of Dynamic Functional Brain Connectivity Time Series.

Thompson WH, Fransson P.

Brain Connect. 2016 Dec;6(10):735-746. Epub 2016 Nov 21.

20.

Removing the barrier to the calculation of activation energies.

Mesele OO, Thompson WH.

J Chem Phys. 2016 Oct 7;145(13):134107.

PMID:
27782445
21.

On the Structural and Dynamical Properties of DOPC Reverse Micelles.

Abel S, Galamba N, Karakas E, Marchi M, Thompson WH, Laage D.

Langmuir. 2016 Oct 4. [Epub ahead of print]

PMID:
27649391
22.

Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores.

Burris PC, Laage D, Thompson WH.

J Chem Phys. 2016 May 21;144(19):194709. doi: 10.1063/1.4949766.

PMID:
27208967
23.

Vibrational Quantum Decoherence in Liquid Water.

Joutsuka T, Thompson WH, Laage D.

J Phys Chem Lett. 2016 Feb 18;7(4):616-21. doi: 10.1021/acs.jpclett.5b02637. Epub 2016 Jan 28.

24.

What Determines the Location of a Small Solute in a Nanoconfined Liquid?

Wells RH, Thompson WH.

J Phys Chem B. 2015 Sep 24;119(38):12446-54. doi: 10.1021/acs.jpcb.5b04770. Epub 2015 Sep 15.

PMID:
26372781
25.

Reorientation of Isomeric Butanols: The Multiple Effects of Steric Bulk Arrangement on Hydrogen-Bond Dynamics.

Mesele OO, Vartia AA, Laage D, Thompson WH.

J Phys Chem B. 2016 Mar 3;120(8):1546-59. doi: 10.1021/acs.jpcb.5b07692. Epub 2015 Sep 23.

PMID:
26356232
26.

The mean-variance relationship reveals two possible strategies for dynamic brain connectivity analysis in fMRI.

Thompson WH, Fransson P.

Front Hum Neurosci. 2015 Jul 14;9:398. doi: 10.3389/fnhum.2015.00398. eCollection 2015.

27.

Solute location in a nanoconfined liquid depends on charge distribution.

Harvey JA, Thompson WH.

J Chem Phys. 2015 Jul 28;143(4):044701. doi: 10.1063/1.4926936.

PMID:
26233151
28.

Direct observation of vinyl hydroperoxide.

Liu F, Fang Y, Kumar M, Thompson WH, Lester MI.

Phys Chem Chem Phys. 2015 Aug 28;17(32):20490-4. doi: 10.1039/c5cp02917a. Epub 2015 Jul 22.

PMID:
26199999
29.

The frequency dimension of fMRI dynamic connectivity: Network connectivity, functional hubs and integration in the resting brain.

Thompson WH, Fransson P.

Neuroimage. 2015 Nov 1;121:227-42. doi: 10.1016/j.neuroimage.2015.07.022. Epub 2015 Jul 11.

30.

A jackknife approach to quantifying single-trial correlation between covariance-based metrics undefined on a single-trial basis.

Richter CG, Thompson WH, Bosman CA, Fries P.

Neuroimage. 2015 Jul 1;114:57-70. doi: 10.1016/j.neuroimage.2015.04.040. Epub 2015 Apr 24.

31.

Origins of the non-exponential reorientation dynamics of nanoconfined water.

Fogarty AC, Duboué-Dijon E, Laage D, Thompson WH.

J Chem Phys. 2014 Nov 14;141(18):18C523. doi: 10.1063/1.4896983.

PMID:
25399188
32.

Thermodynamic Driving Forces for Dye Molecule Position and Orientation in Nanoconfined Solvents.

Harvey JA, Thompson WH.

J Phys Chem B. 2015 Jul 23;119(29):9150-9. doi: 10.1021/jp509051n. Epub 2014 Oct 21.

PMID:
25295835
33.

Barrierless tautomerization of Criegee intermediates via acid catalysis.

Kumar M, Busch DH, Subramaniam B, Thompson WH.

Phys Chem Chem Phys. 2014 Nov 14;16(42):22968-73. doi: 10.1039/c4cp03065f.

PMID:
25259380
34.

Role of tunable acid catalysis in decomposition of α-hydroxyalkyl hydroperoxides and mechanistic implications for tropospheric chemistry.

Kumar M, Busch DH, Subramaniam B, Thompson WH.

J Phys Chem A. 2014 Oct 16;118(41):9701-11. doi: 10.1021/jp505100x. Epub 2014 Oct 2.

PMID:
25234427
35.

Determinants of activity at human Toll-like receptors 7 and 8: quantitative structure-activity relationship (QSAR) of diverse heterocyclic scaffolds.

Yoo E, Salunke DB, Sil D, Guo X, Salyer AC, Hermanson AR, Kumar M, Malladi SS, Balakrishna R, Thompson WH, Tanji H, Ohto U, Shimizu T, David SA.

J Med Chem. 2014 Oct 9;57(19):7955-70. doi: 10.1021/jm500744f. Epub 2014 Sep 17.

36.

Organic acids tunably catalyze carbonic acid decomposition.

Kumar M, Busch DH, Subramaniam B, Thompson WH.

J Phys Chem A. 2014 Jul 10;118(27):5020-8. doi: 10.1021/jp5037469. Epub 2014 Jun 27. Erratum in: J Phys Chem A. 2014 Oct 30;118(43):10155-6.

PMID:
24933150
37.

Reorientation dynamics of nanoconfined acetonitrile: a critical examination of two-state models.

Norton CD, Thompson WH.

J Phys Chem B. 2014 Jul 17;118(28):8227-35. doi: 10.1021/jp501363q. Epub 2014 Apr 14.

PMID:
24689814
38.

Criegee intermediate reaction with CO: mechanism, barriers, conformer-dependence, and implications for ozonolysis chemistry.

Kumar M, Busch DH, Subramaniam B, Thompson WH.

J Phys Chem A. 2014 Mar 13;118(10):1887-94. doi: 10.1021/jp500258h. Epub 2014 Feb 26.

PMID:
24527836
39.

Solvation and spectra of a charge transfer solute in ethanol confined within nanoscale silica pores.

Vartia AA, Thompson WH.

J Phys Chem B. 2012 May 10;116(18):5414-24. doi: 10.1021/jp210737c. Epub 2012 Apr 27.

PMID:
22482696
40.

Reorientation dynamics of nanoconfined water: power-law decay, hydrogen-bond jumps, and test of a two-state model.

Laage D, Thompson WH.

J Chem Phys. 2012 Jan 28;136(4):044513. doi: 10.1063/1.3679404.

PMID:
22299897
41.

Sampling the proton transfer reaction coordinate in mixed quantum-classical molecular dynamics simulations.

Ka BJ, Thompson WH.

J Phys Chem A. 2012 Jan 19;116(2):832-8. doi: 10.1021/jp206772e. Epub 2012 Jan 10.

PMID:
22148746
42.

On the reorientation and hydrogen-bond dynamics of alcohols.

Vartia AA, Mitchell-Koch KR, Stirnemann G, Laage D, Thompson WH.

J Phys Chem B. 2011 Oct 27;115(42):12173-8. doi: 10.1021/jp206875k. Epub 2011 Oct 5.

PMID:
21916487
43.

Time-dependent fluorescence in nanoconfined solvents: linear-response approximations and Gaussian statistics.

Laird BB, Thompson WH.

J Chem Phys. 2011 Aug 28;135(8):084511. doi: 10.1063/1.3626825.

PMID:
21895203
44.

Molecular-level mechanisms of vibrational frequency shifts in a polar liquid.

Morales CM, Thompson WH.

J Phys Chem B. 2011 Jun 16;115(23):7597-605. doi: 10.1021/jp201591c. Epub 2011 May 24.

PMID:
21608988
45.

Solvation dynamics and proton transfer in nanoconfined liquids.

Thompson WH.

Annu Rev Phys Chem. 2011;62:599-619. doi: 10.1146/annurev-physchem-032210-103330.

PMID:
21219146
46.

Linear 6,6'-biazulenyl framework featuring isocyanide termini: synthesis, structure, redox behavior, complexation, and self-assembly on Au(111).

Maher TR, Spaeth AD, Neal BM, Berrie CL, Thompson WH, Day VW, Barybin MV.

J Am Chem Soc. 2010 Nov 17;132(45):15924-6. doi: 10.1021/ja108202d. Epub 2010 Oct 26.

PMID:
20977232
47.

Nonadiabatic effects on proton transfer rate constants in a nanoconfined solvent.

Ka BJ, Thompson WH.

J Phys Chem B. 2010 Jun 10;114(22):7535-42. doi: 10.1021/jp911740c.

PMID:
20469941
48.
49.

Grand canonical Monte Carlo simulations of acetonitrile filling of silica pores of varying hydrophilicity/hydrophobicity.

Gulmen TS, Thompson WH.

Langmuir. 2009 Jan 20;25(2):1103-11. doi: 10.1021/la801896g.

PMID:
19113811
50.

Simulations of infrared spectra of nanoconfined liquids: acetonitrile confined in nanoscale, hydrophilic silica pores.

Morales CM, Thompson WH.

J Phys Chem A. 2009 Mar 12;113(10):1922-33. doi: 10.1021/jp8072969.

PMID:
19061371

Supplemental Content

Loading ...
Support Center