Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 101

1.
2.

A Wide QRS Complex Illusion.

Thomashow MA, Goldschlager N.

JAMA Intern Med. 2018 Jul 1;178(7):982-983. doi: 10.1001/jamainternmed.2018.2095. No abstract available.

PMID:
29799962
3.

Genetic basis of photosynthetic responses to cold in two locally adapted populations of Arabidopsis thaliana.

Oakley CG, Savage L, Lotz S, Larson GR, Thomashow MF, Kramer DM, Schemske DW.

J Exp Bot. 2018 Jan 23;69(3):699-709. doi: 10.1093/jxb/erx437.

4.

CAMTA-Mediated Regulation of Salicylic Acid Immunity Pathway Genes in Arabidopsis Exposed to Low Temperature and Pathogen Infection.

Kim YS, An C, Park S, Gilmour SJ, Wang L, Renna L, Brandizzi F, Grumet R, Thomashow MF.

Plant Cell. 2017 Oct;29(10):2465-2477. doi: 10.1105/tpc.16.00865. Epub 2017 Oct 5.

5.

Natural variation in the C-repeat binding factor cold response pathway correlates with local adaptation of Arabidopsis ecotypes.

Gehan MA, Park S, Gilmour SJ, An C, Lee CM, Thomashow MF.

Plant J. 2015 Nov;84(4):682-93. doi: 10.1111/tpj.13027. Epub 2015 Oct 28.

6.

Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network.

Park S, Lee CM, Doherty CJ, Gilmour SJ, Kim Y, Thomashow MF.

Plant J. 2015 Apr;82(2):193-207. doi: 10.1111/tpj.12796. Epub 2015 Mar 23.

7.

Transcription factors that directly regulate the expression of CSLA9 encoding mannan synthase in Arabidopsis thaliana.

Kim WC, Reca IB, Kim Y, Park S, Thomashow MF, Keegstra K, Han KH.

Plant Mol Biol. 2014 Mar;84(4-5):577-87. doi: 10.1007/s11103-013-0154-9. Epub 2013 Nov 17.

PMID:
24243147
8.

Endothelial microparticles in mild chronic obstructive pulmonary disease and emphysema. The Multi-Ethnic Study of Atherosclerosis Chronic Obstructive Pulmonary Disease study.

Thomashow MA, Shimbo D, Parikh MA, Hoffman EA, Vogel-Claussen J, Hueper K, Fu J, Liu CY, Bluemke DA, Ventetuolo CE, Doyle MF, Barr RG.

Am J Respir Crit Care Med. 2013 Jul 1;188(1):60-8. doi: 10.1164/rccm.201209-1697OC.

9.

Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis.

Kim Y, Park S, Gilmour SJ, Thomashow MF.

Plant J. 2013 Aug;75(3):364-76. doi: 10.1111/tpj.12205. Epub 2013 May 11.

10.

Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana.

Lee CM, Thomashow MF.

Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):15054-9. doi: 10.1073/pnas.1211295109. Epub 2012 Aug 27.

11.

Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade.

Yang DL, Yao J, Mei CS, Tong XH, Zeng LJ, Li Q, Xiao LT, Sun TP, Li J, Deng XW, Lee CM, Thomashow MF, Yang Y, He Z, He SY.

Proc Natl Acad Sci U S A. 2012 May 8;109(19):E1192-200. doi: 10.1073/pnas.1201616109. Epub 2012 Apr 23.

12.

Cis-regulatory code of stress-responsive transcription in Arabidopsis thaliana.

Zou C, Sun K, Mackaluso JD, Seddon AE, Jin R, Thomashow MF, Shiu SH.

Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14992-7. doi: 10.1073/pnas.1103202108. Epub 2011 Aug 17.

13.

A comparison of the low temperature transcriptomes and CBF regulons of three plant species that differ in freezing tolerance: Solanum commersonii, Solanum tuberosum, and Arabidopsis thaliana.

Carvallo MA, Pino MT, Jeknic Z, Zou C, Doherty CJ, Shiu SH, Chen TH, Thomashow MF.

J Exp Bot. 2011 Jul;62(11):3807-19. doi: 10.1093/jxb/err066. Epub 2011 Apr 21.

14.

Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis.

Dong MA, Farré EM, Thomashow MF.

Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):7241-6. doi: 10.1073/pnas.1103741108. Epub 2011 Apr 6.

15.

Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway.

Thomashow MF.

Plant Physiol. 2010 Oct;154(2):571-7. doi: 10.1104/pp.110.161794. No abstract available.

16.

Histone dynamics and roles of histone acetyltransferases during cold-induced gene regulation in Arabidopsis.

Pavangadkar K, Thomashow MF, Triezenberg SJ.

Plant Mol Biol. 2010 Sep;74(1-2):183-200. doi: 10.1007/s11103-010-9665-9. Epub 2010 Jul 27.

PMID:
20661629
17.

The genome sequence of Psychrobacter arcticus 273-4, a psychroactive Siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth.

Ayala-del-Río HL, Chain PS, Grzymski JJ, Ponder MA, Ivanova N, Bergholz PW, Di Bartolo G, Hauser L, Land M, Bakermans C, Rodrigues D, Klappenbach J, Zarka D, Larimer F, Richardson P, Murray A, Thomashow M, Tiedje JM.

Appl Environ Microbiol. 2010 Apr;76(7):2304-12. doi: 10.1128/AEM.02101-09. Epub 2010 Feb 12.

18.

DNA binding by the Arabidopsis CBF1 transcription factor requires the PKKP/RAGRxKFxETRHP signature sequence.

Canella D, Gilmour SJ, Kuhn LA, Thomashow MF.

Biochim Biophys Acta. 2010 May-Jun;1799(5-6):454-62. doi: 10.1016/j.bbagrm.2009.11.017. Epub 2009 Nov 27.

PMID:
19948259
19.

Evolution of stress-regulated gene expression in duplicate genes of Arabidopsis thaliana.

Zou C, Lehti-Shiu MD, Thomashow M, Shiu SH.

PLoS Genet. 2009 Jul;5(7):e1000581. doi: 10.1371/journal.pgen.1000581. Epub 2009 Jul 31.

20.

A role for circadian evening elements in cold-regulated gene expression in Arabidopsis.

Mikkelsen MD, Thomashow MF.

Plant J. 2009 Oct;60(2):328-39. doi: 10.1111/j.1365-313X.2009.03957.x. Epub 2009 Jun 30.

21.

Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance.

Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF.

Plant Cell. 2009 Mar;21(3):972-84. doi: 10.1105/tpc.108.063958. Epub 2009 Mar 6.

22.

Two Arabidopsis orthologs of the transcriptional coactivator ADA2 have distinct biological functions.

Hark AT, Vlachonasios KE, Pavangadkar KA, Rao S, Gordon H, Adamakis ID, Kaldis A, Thomashow MF, Triezenberg SJ.

Biochim Biophys Acta. 2009 Feb;1789(2):117-24. doi: 10.1016/j.bbagrm.2008.09.003. Epub 2008 Sep 26.

PMID:
18929690
23.

Development and use of genetic system to identify genes required for efficient low-temperature growth of Psychrobacter arcticus 273-4.

Bakermans C, Sloup RE, Zarka DG, Tiedje JM, Thomashow MF.

Extremophiles. 2009 Jan;13(1):21-30. doi: 10.1007/s00792-008-0193-3. Epub 2008 Sep 26.

PMID:
18818866
24.

Metabolic activity of Siberian permafrost isolates, Psychrobacter arcticus and Exiguobacterium sibiricum, at low water activities.

Ponder MA, Thomashow MF, Tiedje JM.

Extremophiles. 2008 Jul;12(4):481-90. doi: 10.1007/s00792-008-0151-0. Epub 2008 Mar 12.

PMID:
18335164
25.

Ectopic AtCBF1 over-expression enhances freezing tolerance and induces cold acclimation-associated physiological modifications in potato.

Pino MT, Skinner JS, Jeknić Z, Hayes PM, Soeldner AH, Thomashow MF, Chen TH.

Plant Cell Environ. 2008 Apr;31(4):393-406. doi: 10.1111/j.1365-3040.2008.01776.x. Epub 2008 Feb 4.

26.

Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield.

Pino MT, Skinner JS, Park EJ, Jeknić Z, Hayes PM, Thomashow MF, Chen TH.

Plant Biotechnol J. 2007 Sep;5(5):591-604. Epub 2007 Jun 8. Erratum in: Plant Biotechnol J. 2007 Sep;5(5):676.

27.

A proteomic analysis of Psychrobacter articus 273-4 adaptation to low temperature and salinity using a 2-D liquid mapping approach.

Zheng S, Ponder MA, Shih JY, Tiedje JM, Thomashow MF, Lubman DM.

Electrophoresis. 2007 Feb;28(3):467-88.

28.

Proteomic analysis of Psychrobacter cryohalolentis K5 during growth at subzero temperatures.

Bakermans C, Tollaksen SL, Giometti CS, Wilkerson C, Tiedje JM, Thomashow MF.

Extremophiles. 2007 Mar;11(2):343-54. Epub 2006 Nov 23.

PMID:
17123128
29.

Psychrobacter cryohalolentis sp. nov. and Psychrobacter arcticus sp. nov., isolated from Siberian permafrost.

Bakermans C, Ayala-del-Río HL, Ponder MA, Vishnivetskaya T, Gilichinsky D, Thomashow MF, Tiedje JM.

Int J Syst Evol Microbiol. 2006 Jun;56(Pt 6):1285-91.

PMID:
16738105
30.

Physical and functional interactions of Arabidopsis ADA2 transcriptional coactivator proteins with the acetyltransferase GCN5 and with the cold-induced transcription factor CBF1.

Mao Y, Pavangadkar KA, Thomashow MF, Triezenberg SJ.

Biochim Biophys Acta. 2006 Jan-Feb;1759(1-2):69-79. Epub 2006 Mar 27.

PMID:
16603259
31.

Characterization of Exiguobacterium isolates from the Siberian permafrost. Description of Exiguobacterium sibiricum sp. nov.

Rodrigues DF, Goris J, Vishnivetskaya T, Gilichinsky D, Thomashow MF, Tiedje JM.

Extremophiles. 2006 Aug;10(4):285-94. Epub 2006 Feb 18.

PMID:
16489412
32.

Mapping of barley homologs to genes that regulate low temperature tolerance in Arabidopsis.

Skinner JS, Szucs P, von Zitzewitz J, Marquez-Cedillo L, Filichkin T, Stockinger EJ, Thomashow MF, Chen TH, Hayes PM.

Theor Appl Genet. 2006 Mar;112(5):832-42. Epub 2005 Dec 20.

PMID:
16365758
33.

Characterization of potential stress responses in ancient Siberian permafrost psychroactive bacteria.

Ponder MA, Gilmour SJ, Bergholz PW, Mindock CA, Hollingsworth R, Thomashow MF, Tiedje JM.

FEMS Microbiol Ecol. 2005 Jun 1;53(1):103-15. Epub 2005 Jan 11.

34.

Structural, functional, and phylogenetic characterization of a large CBF gene family in barley.

Skinner JS, von Zitzewitz J, Szucs P, Marquez-Cedillo L, Filichkin T, Amundsen K, Stockinger EJ, Thomashow MF, Chen TH, Hayes PM.

Plant Mol Biol. 2005 Nov;59(4):533-51.

PMID:
16244905
35.

Multiple hydrophobic motifs in Arabidopsis CBF1 COOH-terminus provide functional redundancy in trans-activation.

Wang Z, Triezenberg SJ, Thomashow MF, Stockinger EJ.

Plant Mol Biol. 2005 Jul;58(4):543-59.

PMID:
16021338
36.

Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock.

Fowler SG, Cook D, Thomashow MF.

Plant Physiol. 2005 Mar;137(3):961-8. Epub 2005 Feb 22.

37.

Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis.

Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF.

Plant J. 2005 Jan;41(2):195-211.

38.

A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis.

Cook D, Fowler S, Fiehn O, Thomashow MF.

Proc Natl Acad Sci U S A. 2004 Oct 19;101(42):15243-8. Epub 2004 Sep 21.

39.

Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities.

Gilmour SJ, Fowler SG, Thomashow MF.

Plant Mol Biol. 2004 Mar;54(5):767-81.

PMID:
15356394
40.

Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis.

Zhang X, Fowler SG, Cheng H, Lou Y, Rhee SY, Stockinger EJ, Thomashow MF.

Plant J. 2004 Sep;39(6):905-19.

41.

Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element.

Knight H, Zarka DG, Okamoto H, Thomashow MF, Knight MR.

Plant Physiol. 2004 Jul;135(3):1710-7. Epub 2004 Jul 9.

42.

PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms.

Thomashow MF.

Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:571-599.

PMID:
15012220
44.
45.

Regulation of Sinorhizobium meliloti 1021 rrnA-reporter gene fusions in response to cold shock.

Gustafson AM, O'Connell KP, Thomashow MF.

Can J Microbiol. 2002 Sep;48(9):821-30.

PMID:
12455614
46.

Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis.

Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ.

Plant Physiol. 2002 Oct;130(2):639-48.

47.

Expression of an insect (Dendroides canadensis) antifreeze protein in Arabidopsis thaliana results in a decrease in plant freezing temperature.

Huang T, Nicodemus J, Zarka DG, Thomashow MF, Wisniewski M, Duman JG.

Plant Mol Biol. 2002 Oct;50(3):333-44.

PMID:
12369611
49.

Cold signalling associated with vernalization in Arabidopsis thaliana does not involve CBF1 or abscisic acid.

Liu J, Gilmour SJ, Thomashow MF, Van Nocker S.

Physiol Plant. 2002 Jan;114(1):125-134.

PMID:
11982943
50.

Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species.

Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Deits T, Thomashow MF.

Plant Physiol. 2001 Nov;127(3):910-7.

Supplemental Content

Loading ...
Support Center