Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 34

1.

Human fecal metabolomic profiling could inform Clostridioides difficile infection diagnosis and treatment.

Theriot CM, Fletcher JR.

J Clin Invest. 2019 Aug 12;130:3539-3541. doi: 10.1172/JCI130008. eCollection 2019 Aug 12.

2.

High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution.

Callahan BJ, Wong J, Heiner C, Oh S, Theriot CM, Gulati AS, McGill SK, Dougherty MK.

Nucleic Acids Res. 2019 Jul 3. pii: gkz569. doi: 10.1093/nar/gkz569. [Epub ahead of print]

PMID:
31269198
3.

Bile salt hydrolases: Gatekeepers of bile acid metabolism and host-microbiome crosstalk in the gastrointestinal tract.

Foley MH, O'Flaherty S, Barrangou R, Theriot CM.

PLoS Pathog. 2019 Mar 7;15(3):e1007581. doi: 10.1371/journal.ppat.1007581. eCollection 2019 Mar. No abstract available.

4.

Dosing Regimen of Enrofloxacin Impacts Intestinal Pharmacokinetics and the Fecal Microbiota in Steers.

Ferguson KM, Jacob ME, Theriot CM, Callahan BJ, Prange T, Papich MG, Foster DM.

Front Microbiol. 2018 Sep 19;9:2190. doi: 10.3389/fmicb.2018.02190. eCollection 2018.

5.

A Small Molecule-Screening Pipeline to Evaluate the Therapeutic Potential of 2-Aminoimidazole Molecules Against Clostridium difficile.

Thanissery R, Zeng D, Doyle RG, Theriot CM.

Front Microbiol. 2018 Jun 6;9:1206. doi: 10.3389/fmicb.2018.01206. eCollection 2018.

6.

The Lactobacillus Bile Salt Hydrolase Repertoire Reveals Niche-Specific Adaptation.

O'Flaherty S, Briner Crawley A, Theriot CM, Barrangou R.

mSphere. 2018 May 30;3(3). pii: e00140-18. doi: 10.1128/mSphere.00140-18. Print 2018 Jun 27.

7.

Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells.

Ma C, Han M, Heinrich B, Fu Q, Zhang Q, Sandhu M, Agdashian D, Terabe M, Berzofsky JA, Fako V, Ritz T, Longerich T, Theriot CM, McCulloch JA, Roy S, Yuan W, Thovarai V, Sen SK, Ruchirawat M, Korangy F, Wang XW, Trinchieri G, Greten TF.

Science. 2018 May 25;360(6391). pii: eaan5931. doi: 10.1126/science.aan5931.

8.

Restoration of short chain fatty acid and bile acid metabolism following fecal microbiota transplantation in patients with recurrent Clostridium difficile infection.

Seekatz AM, Theriot CM, Rao K, Chang YM, Freeman AE, Kao JY, Young VB.

Anaerobe. 2018 Oct;53:64-73. doi: 10.1016/j.anaerobe.2018.04.001. Epub 2018 Apr 12.

PMID:
29654837
9.

Shifts in the Gut Metabolome and Clostridium difficile Transcriptome throughout Colonization and Infection in a Mouse Model.

Fletcher JR, Erwin S, Lanzas C, Theriot CM.

mSphere. 2018 Mar 28;3(2). pii: e00089-18. doi: 10.1128/mSphere.00089-18. eCollection 2018 Mar-Apr.

10.

Beyond Structure: Defining the Function of the Gut Using Omic Approaches for Rational Design of Personalized Therapeutics.

Theriot CM.

mSystems. 2018 Mar 6;3(2). pii: e00173-17. doi: 10.1128/mSystems.00173-17. eCollection 2018 Mar-Apr.

11.

Introduction to the special issue highlighting Anaerobe 2016.

Cox LM, Theriot CM, Fichorova RN.

Anaerobe. 2017 Jun;45:1-2. doi: 10.1016/j.anaerobe.2017.05.002. Epub 2017 May 4. No abstract available.

PMID:
28478276
12.

Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids.

Thanissery R, Winston JA, Theriot CM.

Anaerobe. 2017 Jun;45:86-100. doi: 10.1016/j.anaerobe.2017.03.004. Epub 2017 Mar 6.

13.

Cefoperazone-treated Mouse Model of Clinically-relevant Clostridium difficile Strain R20291.

Winston JA, Thanissery R, Montgomery SA, Theriot CM.

J Vis Exp. 2016 Dec 10;(118). doi: 10.3791/54850.

14.

Metabolic Model-Based Integration of Microbiome Taxonomic and Metabolomic Profiles Elucidates Mechanistic Links between Ecological and Metabolic Variation.

Noecker C, Eng A, Srinivasan S, Theriot CM, Young VB, Jansson JK, Fredricks DN, Borenstein E.

mSystems. 2016 Jan-Feb;1(1). pii: e00013-15. Epub 2016 Jan 19.

15.

Antibiotic-Induced Alterations of the Gut Microbiota Alter Secondary Bile Acid Production and Allow for Clostridium difficile Spore Germination and Outgrowth in the Large Intestine.

Theriot CM, Bowman AA, Young VB.

mSphere. 2016 Jan 6;1(1). pii: e00045-15. doi: 10.1128/mSphere.00045-15. eCollection 2016 Jan-Feb.

16.

Impact of microbial derived secondary bile acids on colonization resistance against Clostridium difficile in the gastrointestinal tract.

Winston JA, Theriot CM.

Anaerobe. 2016 Oct;41:44-50. doi: 10.1016/j.anaerobe.2016.05.003. Epub 2016 May 7. Review.

17.

Interactions Between the Gastrointestinal Microbiome and Clostridium difficile.

Theriot CM, Young VB.

Annu Rev Microbiol. 2015;69:445-61. doi: 10.1146/annurev-micro-091014-104115. Review.

18.

Fecal Microbiota Transplantation Eliminates Clostridium difficile in a Murine Model of Relapsing Disease.

Seekatz AM, Theriot CM, Molloy CT, Wozniak KL, Bergin IL, Young VB.

Infect Immun. 2015 Oct;83(10):3838-46. doi: 10.1128/IAI.00459-15. Epub 2015 Jul 13.

19.

Effects of tigecycline and vancomycin administration on established Clostridium difficile infection.

Theriot CM, Schumacher CA, Bassis CM, Seekatz AM, Young VB.

Antimicrob Agents Chemother. 2015 Mar;59(3):1596-604. doi: 10.1128/AAC.04296-14. Epub 2014 Dec 29.

20.

Dynamics and establishment of Clostridium difficile infection in the murine gastrointestinal tract.

Koenigsknecht MJ, Theriot CM, Bergin IL, Schumacher CA, Schloss PD, Young VB.

Infect Immun. 2015 Mar;83(3):934-41. doi: 10.1128/IAI.02768-14. Epub 2014 Dec 22.

21.

Interleukin-22 and CD160 play additive roles in the host mucosal response to Clostridium difficile infection in mice.

Sadighi Akha AA, McDermott AJ, Theriot CM, Carlson PE Jr, Frank CR, McDonald RA, Falkowski NR, Bergin IL, Young VB, Huffnagle GB.

Immunology. 2015 Apr;144(4):587-97. doi: 10.1111/imm.12414.

22.

Clostridium difficile-induced colitis in mice is independent of leukotrienes.

Trindade BC, Theriot CM, Leslie JL, Carlson PE Jr, Bergin IL, Peters-Golden M, Young VB, Aronoff DM.

Anaerobe. 2014 Dec;30:90-8. doi: 10.1016/j.anaerobe.2014.09.006. Epub 2014 Sep 16.

23.

Alteration of the murine gastrointestinal microbiota by tigecycline leads to increased susceptibility to Clostridium difficile infection.

Bassis CM, Theriot CM, Young VB.

Antimicrob Agents Chemother. 2014 May;58(5):2767-74. doi: 10.1128/AAC.02262-13. Epub 2014 Mar 3.

24.

Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection.

Theriot CM, Koenigsknecht MJ, Carlson PE Jr, Hatton GE, Nelson AM, Li B, Huffnagle GB, Z Li J, Young VB.

Nat Commun. 2014;5:3114. doi: 10.1038/ncomms4114.

25.

Microbial and metabolic interactions between the gastrointestinal tract and Clostridium difficile infection.

Theriot CM, Young VB.

Gut Microbes. 2014 Jan-Feb;5(1):86-95. doi: 10.4161/gmic.27131. Epub 2013 Dec 11. Review.

26.

The complete Campylobacter jejuni transcriptome during colonization of a natural host determined by RNAseq.

Taveirne ME, Theriot CM, Livny J, DiRita VJ.

PLoS One. 2013 Aug 21;8(8):e73586. doi: 10.1371/journal.pone.0073586. eCollection 2013.

27.

Acute infection of mice with Clostridium difficile leads to eIF2╬▒ phosphorylation and pro-survival signalling as part of the mucosal inflammatory response.

Sadighi Akha AA, Theriot CM, Erb-Downward JR, McDermott AJ, Falkowski NR, Tyra HM, Rutkowski DT, Young VB, Huffnagle GB.

Immunology. 2013 Sep;140(1):111-22. doi: 10.1111/imm.12122.

28.

Cefoperazone-treated mice as an experimental platform to assess differential virulence of Clostridium difficile strains.

Theriot CM, Koumpouras CC, Carlson PE, Bergin II, Aronoff DM, Young VB.

Gut Microbes. 2011 Nov-Dec;2(6):326-34. doi: 10.4161/gmic.19142. Epub 2011 Nov 1.

29.
30.

The interplay between microbiome dynamics and pathogen dynamics in a murine model of Clostridium difficile Infection.

Reeves AE, Theriot CM, Bergin IL, Huffnagle GB, Schloss PD, Young VB.

Gut Microbes. 2011 May-Jun;2(3):145-58. Epub 2011 May 1.

31.

Hydrolysis of organophosphorus compounds by microbial enzymes.

Theriot CM, Grunden AM.

Appl Microbiol Biotechnol. 2011 Jan;89(1):35-43. doi: 10.1007/s00253-010-2807-9. Epub 2010 Oct 2. Review.

PMID:
20890601
32.

Improving the catalytic activity of hyperthermophilic Pyrococcus prolidases for detoxification of organophosphorus nerve agents over a broad range of temperatures.

Theriot CM, Du X, Tove SR, Grunden AM.

Appl Microbiol Biotechnol. 2010 Aug;87(5):1715-26. doi: 10.1007/s00253-010-2614-3. Epub 2010 Apr 27.

PMID:
20422176
33.

Characterization of two proline dipeptidases (prolidases) from the hyperthermophilic archaeon Pyrococcus horikoshii.

Theriot CM, Tove SR, Grunden AM.

Appl Microbiol Biotechnol. 2010 Mar;86(1):177-88. doi: 10.1007/s00253-009-2235-x. Epub 2009 Sep 26. Erratum in: Appl Microbiol Biotechnol. 2010 Mar;86(1):393.

PMID:
19784642
34.

Biotechnological applications of recombinant microbial prolidases.

Theriot CM, Tove SR, Grunden AM.

Adv Appl Microbiol. 2009;68:99-132. doi: 10.1016/S0065-2164(09)01203-9. Review.

PMID:
19426854

Supplemental Content

Loading ...
Support Center