Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 310

1.
2.
3.

Flavin-Based Electron Bifurcation, A New Mechanism of Biological Energy Coupling.

Buckel W, Thauer RK.

Chem Rev. 2018 Apr 11;118(7):3862-3886. doi: 10.1021/acs.chemrev.7b00707. Epub 2018 Mar 21. Review.

4.

Lothar Jaenicke and C1-metabolism: his first 25 years of research.

Thauer RK.

Z Naturforsch C. 2017 Jul 26;72(7-8):237-243. doi: 10.1515/znc-2017-0108.

PMID:
28710885
5.

Energy in Ancient Metabolism.

Martin WF, Thauer RK.

Cell. 2017 Mar 9;168(6):953-955. doi: 10.1016/j.cell.2017.02.032.

6.

Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol.

Duin EC, Wagner T, Shima S, Prakash D, Cronin B, Yáñez-Ruiz DR, Duval S, Rümbeli R, Stemmler RT, Thauer RK, Kindermann M.

Proc Natl Acad Sci U S A. 2016 May 31;113(22):6172-7. doi: 10.1073/pnas.1600298113. Epub 2016 May 2. Erratum in: Proc Natl Acad Sci U S A. 2016 May 31;113(22):E3185.

7.

My Lifelong Passion for Biochemistry and Anaerobic Microorganisms.

Thauer RK.

Annu Rev Microbiol. 2015;69:1-30. doi: 10.1146/annurev-micro-091014-104344.

PMID:
26488272
8.

Energy Conservation Associated with Ethanol Formation from H2 and CO2 in Clostridium autoethanogenum Involving Electron Bifurcation.

Mock J, Zheng Y, Mueller AP, Ly S, Tran L, Segovia S, Nagaraju S, Köpke M, Dürre P, Thauer RK.

J Bacteriol. 2015 Sep;197(18):2965-80. doi: 10.1128/JB.00399-15. Epub 2015 Jul 6.

9.

Insights into Flavin-based Electron Bifurcation via the NADH-dependent Reduced Ferredoxin:NADP Oxidoreductase Structure.

Demmer JK, Huang H, Wang S, Demmer U, Thauer RK, Ermler U.

J Biol Chem. 2015 Sep 4;290(36):21985-95. doi: 10.1074/jbc.M115.656520. Epub 2015 Jul 2.

10.

Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations.

Lever MA, Rogers KL, Lloyd KG, Overmann J, Schink B, Thauer RK, Hoehler TM, Jørgensen BB.

FEMS Microbiol Rev. 2015 Sep;39(5):688-728. doi: 10.1093/femsre/fuv020. Epub 2015 May 20. Review.

PMID:
25994609
12.

Evidence for a hexaheteromeric methylenetetrahydrofolate reductase in Moorella thermoacetica.

Mock J, Wang S, Huang H, Kahnt J, Thauer RK.

J Bacteriol. 2014 Sep;196(18):3303-14. doi: 10.1128/JB.01839-14. Epub 2014 Jul 7.

13.

Methyl-coenzyme M reductase from methanogenic archaea: isotope effects on the formation and anaerobic oxidation of methane.

Scheller S, Goenrich M, Thauer RK, Jaun B.

J Am Chem Soc. 2013 Oct 9;135(40):14975-84. doi: 10.1021/ja406485z. Epub 2013 Sep 25.

PMID:
24004388
14.

Methyl-coenzyme M reductase from methanogenic archaea: isotope effects on label exchange and ethane formation with the homologous substrate ethyl-coenzyme M.

Scheller S, Goenrich M, Thauer RK, Jaun B.

J Am Chem Soc. 2013 Oct 9;135(40):14985-95. doi: 10.1021/ja4064876. Epub 2013 Sep 25.

PMID:
24003767
15.

NADP-specific electron-bifurcating [FeFe]-hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO.

Wang S, Huang H, Kahnt J, Mueller AP, Köpke M, Thauer RK.

J Bacteriol. 2013 Oct;195(19):4373-86. doi: 10.1128/JB.00678-13. Epub 2013 Jul 26.

16.

Clostridium acidurici electron-bifurcating formate dehydrogenase.

Wang S, Huang H, Kahnt J, Thauer RK.

Appl Environ Microbiol. 2013 Oct;79(19):6176-9. doi: 10.1128/AEM.02015-13. Epub 2013 Jul 19.

17.

Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation.

Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJ, Kerfeld CA, Morris RH, Peden CH, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JN, Seefeldt LC, Thauer RK, Waldrop GL.

Chem Rev. 2013 Aug 14;113(8):6621-58. doi: 10.1021/cr300463y. Epub 2013 Jun 14. Review. No abstract available.

18.

A reversible electron-bifurcating ferredoxin- and NAD-dependent [FeFe]-hydrogenase (HydABC) in Moorella thermoacetica.

Wang S, Huang H, Kahnt J, Thauer RK.

J Bacteriol. 2013 Mar;195(6):1267-75. doi: 10.1128/JB.02158-12. Epub 2013 Jan 11.

19.

The Wolfe cycle comes full circle.

Thauer RK.

Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15084-5. Epub 2012 Sep 5. No abstract available.

20.

Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation.

Buckel W, Thauer RK.

Biochim Biophys Acta. 2013 Feb;1827(2):94-113. doi: 10.1016/j.bbabio.2012.07.002. Epub 2012 Jul 16. Review.

21.

Electron bifurcation involved in the energy metabolism of the acetogenic bacterium Moorella thermoacetica growing on glucose or H2 plus CO2.

Huang H, Wang S, Moll J, Thauer RK.

J Bacteriol. 2012 Jul;194(14):3689-99. doi: 10.1128/JB.00385-12. Epub 2012 May 11.

22.

An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis.

Poehlein A, Schmidt S, Kaster AK, Goenrich M, Vollmers J, Thürmer A, Bertsch J, Schuchmann K, Voigt B, Hecker M, Daniel R, Thauer RK, Gottschalk G, Müller V.

PLoS One. 2012;7(3):e33439. doi: 10.1371/journal.pone.0033439. Epub 2012 Mar 29.

23.

Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically.

Shima S, Krueger M, Weinert T, Demmer U, Kahnt J, Thauer RK, Ermler U.

Nature. 2011 Nov 27;481(7379):98-101. doi: 10.1038/nature10663.

PMID:
22121022
24.

Dual role of S-adenosylmethionine (SAM+) in the methylation of sp2-hybridized electrophilic carbons.

Buckel W, Thauer RK.

Angew Chem Int Ed Engl. 2011 Nov 4;50(45):10492-4. doi: 10.1002/anie.201105076. Epub 2011 Sep 14. No abstract available.

PMID:
21919174
25.

More than 200 genes required for methane formation from H₂ and CO₂ and energy conservation are present in Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus.

Kaster AK, Goenrich M, Seedorf H, Liesegang H, Wollherr A, Gottschalk G, Thauer RK.

Archaea. 2011;2011:973848. doi: 10.1155/2011/973848. Epub 2011 Apr 27.

26.

Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2.

Thauer RK.

Curr Opin Microbiol. 2011 Jun;14(3):292-9. doi: 10.1016/j.mib.2011.03.003. Epub 2011 Apr 12. Review.

PMID:
21489863
27.

Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea.

Kaster AK, Moll J, Parey K, Thauer RK.

Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2981-6. doi: 10.1073/pnas.1016761108. Epub 2011 Jan 24.

28.

Polymer/bacteria composite nanofiber non-wovens by electrospinning of living bacteria protected by hydrogel microparticles.

Gensheimer M, Brandis-Heep A, Agarwal S, Thauer RK, Greiner A.

Macromol Biosci. 2011 Mar 10;11(3):333-7. doi: 10.1002/mabi.201000310. Epub 2011 Jan 17.

PMID:
21243634
29.

Intermediates in the catalytic cycle of methyl coenzyme M reductase: isotope exchange is consistent with formation of a σ-alkane-nickel complex.

Scheller S, Goenrich M, Mayr S, Thauer RK, Jaun B.

Angew Chem Int Ed Engl. 2010 Oct 25;49(44):8112-5. doi: 10.1002/anie.201003214. No abstract available.

PMID:
20857468
30.

Complete genome sequence of Methanothermobacter marburgensis, a methanoarchaeon model organism.

Liesegang H, Kaster AK, Wiezer A, Goenrich M, Wollherr A, Seedorf H, Gottschalk G, Thauer RK.

J Bacteriol. 2010 Nov;192(21):5850-1. doi: 10.1128/JB.00844-10. Epub 2010 Aug 27.

31.

NADP+ reduction with reduced ferredoxin and NADP+ reduction with NADH are coupled via an electron-bifurcating enzyme complex in Clostridium kluyveri.

Wang S, Huang H, Moll J, Thauer RK.

J Bacteriol. 2010 Oct;192(19):5115-23. doi: 10.1128/JB.00612-10. Epub 2010 Jul 30. Erratum in: J Bacteriol. 2015 Feb 15;197(4):792.

32.

Functionalization of methane in anaerobic microorganisms.

Thauer RK.

Angew Chem Int Ed Engl. 2010 Sep 10;49(38):6712-3. doi: 10.1002/anie.201002967. No abstract available.

PMID:
20672272
33.

The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane.

Scheller S, Goenrich M, Boecher R, Thauer RK, Jaun B.

Nature. 2010 Jun 3;465(7298):606-8. doi: 10.1038/nature09015.

PMID:
20520712
34.

Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage.

Thauer RK, Kaster AK, Goenrich M, Schick M, Hiromoto T, Shima S.

Annu Rev Biochem. 2010;79:507-36. doi: 10.1146/annurev.biochem.030508.152103. Review.

PMID:
20235826
35.

Binding of coenzyme B induces a major conformational change in the active site of methyl-coenzyme M reductase.

Ebner S, Jaun B, Goenrich M, Thauer RK, Harmer J.

J Am Chem Soc. 2010 Jan 20;132(2):567-75. doi: 10.1021/ja906367h.

PMID:
20014831
36.

Structural basis of the hydride transfer mechanism in F(420)-dependent methylenetetrahydromethanopterin dehydrogenase.

Ceh K, Demmer U, Warkentin E, Moll J, Thauer RK, Shima S, Ermler U.

Biochemistry. 2009 Oct 27;48(42):10098-105. doi: 10.1021/bi901104d.

PMID:
19761261
37.

Celebrating Achim Trebst's 80th birthday.

ter Meulen V, Thauer RK.

Photosynth Res. 2009 Jun;100(3):117-9. doi: 10.1007/s11120-009-9449-8. Epub 2009 Jul 4.

38.

The crystal structure of C176A mutated [Fe]-hydrogenase suggests an acyl-iron ligation in the active site iron complex.

Hiromoto T, Ataka K, Pilak O, Vogt S, Stagni MS, Meyer-Klaucke W, Warkentin E, Thauer RK, Shima S, Ermler U.

FEBS Lett. 2009 Feb 4;583(3):585-90. doi: 10.1016/j.febslet.2009.01.017. Epub 2009 Jan 20.

39.

Carbon monoxide as intrinsic ligand to iron in the active site of [fe]-hydrogenase.

Shima S, Thauer RK, Ermler U.

Met Ions Life Sci. 2009;6:219-40. doi: 10.1039/BK9781847559159-00219. Epub 2009 Jan 30.

PMID:
20877797
40.

Nickel-alkyl bond formation in the active site of methyl-coenzyme m reductase.

Jaun B, Thauer RK.

Met Ions Life Sci. 2009;6:115-32. doi: 10.1039/BK9781847559159-00115. Epub 2009 Jan 30.

PMID:
20877793
41.

Coordination and binding geometry of methyl-coenzyme M in the red1m state of methyl-coenzyme M reductase.

Hinderberger D, Ebner S, Mayr S, Jaun B, Reiher M, Goenrich M, Thauer RK, Harmer J.

J Biol Inorg Chem. 2008 Nov;13(8):1275-89. doi: 10.1007/s00775-008-0417-0. Epub 2008 Aug 19.

PMID:
18712421
42.

The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site.

Shima S, Pilak O, Vogt S, Schick M, Stagni MS, Meyer-Klaucke W, Warkentin E, Thauer RK, Ermler U.

Science. 2008 Jul 25;321(5888):572-5. doi: 10.1126/science.1158978.

43.

A nickel hydride complex in the active site of methyl-coenzyme m reductase: implications for the catalytic cycle.

Harmer J, Finazzo C, Piskorski R, Ebner S, Duin EC, Goenrich M, Thauer RK, Reiher M, Schweiger A, Hinderberger D, Jaun B.

J Am Chem Soc. 2008 Aug 20;130(33):10907-20. doi: 10.1021/ja710949e. Epub 2008 Jul 25.

PMID:
18652465
44.

Structure of an F430 variant from archaea associated with anaerobic oxidation of methane.

Mayr S, Latkoczy C, Krüger M, Günther D, Shima S, Thauer RK, Widdel F, Jaun B.

J Am Chem Soc. 2008 Aug 13;130(32):10758-67. doi: 10.1021/ja802929z. Epub 2008 Jul 22.

PMID:
18642902
45.

Methanogenic archaea: ecologically relevant differences in energy conservation.

Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R.

Nat Rev Microbiol. 2008 Aug;6(8):579-91. doi: 10.1038/nrmicro1931. Epub 2008 Jun 30. Review.

PMID:
18587410
46.

Characterization of the Fe site in iron-sulfur cluster-free hydrogenase (Hmd) and of a model compound via nuclear resonance vibrational spectroscopy (NRVS).

Guo Y, Wang H, Xiao Y, Vogt S, Thauer RK, Shima S, Volkers PI, Rauchfuss TB, Pelmenschikov V, Case DA, Alp EE, Sturhahn W, Yoda Y, Cramer SP.

Inorg Chem. 2008 May 19;47(10):3969-77. doi: 10.1021/ic701251j. Epub 2008 Apr 12.

47.

The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features.

Seedorf H, Fricke WF, Veith B, Brüggemann H, Liesegang H, Strittmatter A, Miethke M, Buckel W, Hinderberger J, Li F, Hagemeier C, Thauer RK, Gottschalk G.

Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2128-33. doi: 10.1073/pnas.0711093105. Epub 2008 Jan 24.

48.

Methane as fuel for anaerobic microorganisms.

Thauer RK, Shima S.

Ann N Y Acad Sci. 2008 Mar;1125:158-70. Epub 2007 Dec 20.

PMID:
18096853
49.

Microbiology. A fifth pathway of carbon fixation.

Thauer RK.

Science. 2007 Dec 14;318(5857):1732-3. No abstract available.

PMID:
18079388
50.

Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri.

Li F, Hinderberger J, Seedorf H, Zhang J, Buckel W, Thauer RK.

J Bacteriol. 2008 Feb;190(3):843-50. Epub 2007 Nov 9.

Supplemental Content

Loading ...
Support Center