Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 84

1.

CRISPR-Based Technologies: Impact of RNA-Targeting Systems.

Terns MP.

Mol Cell. 2018 Nov 1;72(3):404-412. doi: 10.1016/j.molcel.2018.09.018. Review.

PMID:
30388409
2.

CRISPR RNA-guided DNA cleavage by reconstituted Type I-A immune effector complexes.

Majumdar S, Terns MP.

Extremophiles. 2019 Jan;23(1):19-33. doi: 10.1007/s00792-018-1057-0. Epub 2018 Oct 3.

PMID:
30284045
3.

The ribonuclease activity of Csm6 is required for anti-plasmid immunity by Type III-A CRISPR-Cas systems.

Foster K, Kalter J, Woodside W, Terns RM, Terns MP.

RNA Biol. 2019 Apr;16(4):449-460. doi: 10.1080/15476286.2018.1493334. Epub 2018 Aug 1.

PMID:
29995577
4.

Cas4 Nucleases Define the PAM, Length, and Orientation of DNA Fragments Integrated at CRISPR Loci.

Shiimori M, Garrett SC, Graveley BR, Terns MP.

Mol Cell. 2018 Jun 7;70(5):814-824.e6. doi: 10.1016/j.molcel.2018.05.002. Epub 2018 Jun 7.

5.

Complete Genome Sequence of Industrial Dairy Strain Streptococcus thermophilus DGCC 7710.

Hatmaker EA, Riley LA, O'Dell KB, Papanek B, Graveley BR, Garrett SC, Wei Y, Terns MP, Guss AM.

Genome Announc. 2018 Feb 8;6(6). pii: e01587-17. doi: 10.1128/genomeA.01587-17.

6.

Phylogenomics of Cas4 family nucleases.

Hudaiberdiev S, Shmakov S, Wolf YI, Terns MP, Makarova KS, Koonin EV.

BMC Evol Biol. 2017 Nov 28;17(1):232. doi: 10.1186/s12862-017-1081-1.

7.

Role of free DNA ends and protospacer adjacent motifs for CRISPR DNA uptake in Pyrococcus furiosus.

Shiimori M, Garrett SC, Chambers DP, Glover CVC 3rd, Graveley BR, Terns MP.

Nucleic Acids Res. 2017 Nov 2;45(19):11281-11294. doi: 10.1093/nar/gkx839.

8.

Programmable type III-A CRISPR-Cas DNA targeting modules.

Ichikawa HT, Cooper JC, Lo L, Potter J, Terns RM, Terns MP.

PLoS One. 2017 Apr 25;12(4):e0176221. doi: 10.1371/journal.pone.0176221. eCollection 2017.

9.

Visualization of Human Telomerase Localization by Fluorescence Microscopy Techniques.

Abreu E, Terns RM, Terns MP.

Methods Mol Biol. 2017;1587:113-125. doi: 10.1007/978-1-4939-6892-3_11.

PMID:
28324503
10.

Target DNA recognition and cleavage by a reconstituted Type I-G CRISPR-Cas immune effector complex.

Majumdar S, Ligon M, Skinner WC, Terns RM, Terns MP.

Extremophiles. 2017 Jan;21(1):95-107. doi: 10.1007/s00792-016-0871-5. Epub 2016 Aug 31.

11.

CRISPR Outsourcing: Commissioning IHF for Site-Specific Integration of Foreign DNA at the CRISPR Array.

Wei Y, Terns MP.

Mol Cell. 2016 Jun 16;62(6):803-804. doi: 10.1016/j.molcel.2016.06.004.

12.

Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR-Cas system.

Elmore JR, Sheppard NF, Ramia N, Deighan T, Li H, Terns RM, Terns MP.

Genes Dev. 2016 Feb 15;30(4):447-59. doi: 10.1101/gad.272153.115. Epub 2016 Feb 4.

13.

The CRISPR-associated Csx1 protein of Pyrococcus furiosus is an adenosine-specific endoribonuclease.

Sheppard NF, Glover CV 3rd, Terns RM, Terns MP.

RNA. 2016 Feb;22(2):216-24. doi: 10.1261/rna.039842.113. Epub 2015 Dec 8.

14.

DNA targeting by the type I-G and type I-A CRISPR-Cas systems of Pyrococcus furiosus.

Elmore J, Deighan T, Westpheling J, Terns RM, Terns MP.

Nucleic Acids Res. 2015 Dec 2;43(21):10353-63. doi: 10.1093/nar/gkv1140. Epub 2015 Oct 30.

15.

An updated evolutionary classification of CRISPR-Cas systems.

Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJ, Charpentier E, Haft DH, Horvath P, Moineau S, Mojica FJ, Terns RM, Terns MP, White MF, Yakunin AF, Garrett RA, van der Oost J, Backofen R, Koonin EV.

Nat Rev Microbiol. 2015 Nov;13(11):722-36. doi: 10.1038/nrmicro3569. Epub 2015 Sep 28. Review.

16.

Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA.

Swarts DC, Hegge JW, Hinojo I, Shiimori M, Ellis MA, Dumrongkulraksa J, Terns RM, Terns MP, van der Oost J.

Nucleic Acids Res. 2015 May 26;43(10):5120-9. doi: 10.1093/nar/gkv415. Epub 2015 Apr 29.

17.

Three CRISPR-Cas immune effector complexes coexist in Pyrococcus furiosus.

Majumdar S, Zhao P, Pfister NT, Compton M, Olson S, Glover CV 3rd, Wells L, Graveley BR, Terns RM, Terns MP.

RNA. 2015 Jun;21(6):1147-58. doi: 10.1261/rna.049130.114. Epub 2015 Apr 22.

18.

Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation.

Wei Y, Terns RM, Terns MP.

Genes Dev. 2015 Feb 15;29(4):356-61. doi: 10.1101/gad.257550.114.

19.

Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus.

Wei Y, Chesne MT, Terns RM, Terns MP.

Nucleic Acids Res. 2015 Feb 18;43(3):1749-58.

20.

Essential structural and functional roles of the Cmr4 subunit in RNA cleavage by the Cmr CRISPR-Cas complex.

Ramia NF, Spilman M, Tang L, Shao Y, Elmore J, Hale C, Cocozaki A, Bhattacharya N, Terns RM, Terns MP, Li H, Stagg SM.

Cell Rep. 2014 Dec 11;9(5):1610-1617. doi: 10.1016/j.celrep.2014.11.007. Epub 2014 Dec 4.

21.

Target RNA capture and cleavage by the Cmr type III-B CRISPR-Cas effector complex.

Hale CR, Cocozaki A, Li H, Terns RM, Terns MP.

Genes Dev. 2014 Nov 1;28(21):2432-43. doi: 10.1101/gad.250712.114.

22.

The three major types of CRISPR-Cas systems function independently in CRISPR RNA biogenesis in Streptococcus thermophilus.

Carte J, Christopher RT, Smith JT, Olson S, Barrangou R, Moineau S, Glover CV 3rd, Graveley BR, Terns RM, Terns MP.

Mol Microbiol. 2014 Jul;93(1):98-112. doi: 10.1111/mmi.12644. Epub 2014 Jun 4.

23.

CRISPR-based technologies: prokaryotic defense weapons repurposed.

Terns RM, Terns MP.

Trends Genet. 2014 Mar;30(3):111-8. doi: 10.1016/j.tig.2014.01.003. Epub 2014 Feb 18. Review.

24.

The RNA- and DNA-targeting CRISPR-Cas immune systems of Pyrococcus furiosus.

Terns RM, Terns MP.

Biochem Soc Trans. 2013 Dec;41(6):1416-21. doi: 10.1042/BST20130056. Review.

25.

Programmable plasmid interference by the CRISPR-Cas system in Thermococcus kodakarensis.

Elmore JR, Yokooji Y, Sato T, Olson S, Glover CV 3rd, Graveley BR, Atomi H, Terns RM, Terns MP.

RNA Biol. 2013 May;10(5):828-40. doi: 10.4161/rna.24084. Epub 2013 Mar 27.

26.

Structure of the Cmr2-Cmr3 subcomplex of the Cmr RNA silencing complex.

Shao Y, Cocozaki AI, Ramia NF, Terns RM, Terns MP, Li H.

Structure. 2013 Mar 5;21(3):376-84. doi: 10.1016/j.str.2013.01.002. Epub 2013 Feb 7.

27.

Structure of the Cmr2 subunit of the CRISPR-Cas RNA silencing complex.

Cocozaki AI, Ramia NF, Shao Y, Hale CR, Terns RM, Terns MP, Li H.

Structure. 2012 Mar 7;20(3):545-53. doi: 10.1016/j.str.2012.01.018.

28.

Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs.

Hale CR, Majumdar S, Elmore J, Pfister N, Compton M, Olson S, Resch AM, Glover CV 3rd, Graveley BR, Terns RM, Terns MP.

Mol Cell. 2012 Feb 10;45(3):292-302. doi: 10.1016/j.molcel.2011.10.023. Epub 2012 Jan 5.

29.

Processive and distributive extension of human telomeres by telomerase under homeostatic and nonequilibrium conditions.

Zhao Y, Abreu E, Kim J, Stadler G, Eskiocak U, Terns MP, Terns RM, Shay JW, Wright WE.

Mol Cell. 2011 May 6;42(3):297-307. doi: 10.1016/j.molcel.2011.03.020.

30.

CRISPR-based adaptive immune systems.

Terns MP, Terns RM.

Curr Opin Microbiol. 2011 Jun;14(3):321-7. doi: 10.1016/j.mib.2011.03.005. Epub 2011 Apr 29. Review.

31.

Visualization of human telomerase localization by fluorescence microscopy techniques.

Abreu E, Terns RM, Terns MP.

Methods Mol Biol. 2011;735:125-37. doi: 10.1007/978-1-61779-092-8_12.

PMID:
21461817
32.

Interaction of the Cas6 riboendonuclease with CRISPR RNAs: recognition and cleavage.

Wang R, Preamplume G, Terns MP, Terns RM, Li H.

Structure. 2011 Feb 9;19(2):257-64. doi: 10.1016/j.str.2010.11.014.

33.

Binding and cleavage of CRISPR RNA by Cas6.

Carte J, Pfister NT, Compton MM, Terns RM, Terns MP.

RNA. 2010 Nov;16(11):2181-8. doi: 10.1261/rna.2230110. Epub 2010 Sep 30.

34.

Structural basis for substrate placement by an archaeal box C/D ribonucleoprotein particle.

Xue S, Wang R, Yang F, Terns RM, Terns MP, Zhang X, Maxwell ES, Li H.

Mol Cell. 2010 Sep 24;39(6):939-49. doi: 10.1016/j.molcel.2010.08.022.

35.

A Cajal body-independent pathway for telomerase trafficking in mice.

Tomlinson RL, Li J, Culp BR, Terns RM, Terns MP.

Exp Cell Res. 2010 Oct 15;316(17):2797-809. doi: 10.1016/j.yexcr.2010.07.001. Epub 2010 Jul 13.

36.

Telomerase trafficking and assembly in Xenopus oocytes.

Li ZH, Tomlinson RL, Terns RM, Terns MP.

J Cell Sci. 2010 Jul 15;123(Pt 14):2464-72. doi: 10.1242/jcs.063750.

37.

TIN2-tethered TPP1 recruits human telomerase to telomeres in vivo.

Abreu E, Aritonovska E, Reichenbach P, Cristofari G, Culp B, Terns RM, Lingner J, Terns MP.

Mol Cell Biol. 2010 Jun;30(12):2971-82. doi: 10.1128/MCB.00240-10. Epub 2010 Apr 19.

38.

RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex.

Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, Wells L, Terns RM, Terns MP.

Cell. 2009 Nov 25;139(5):945-56. doi: 10.1016/j.cell.2009.07.040.

39.

Structure of a functional ribonucleoprotein pseudouridine synthase bound to a substrate RNA.

Liang B, Zhou J, Kahen E, Terns RM, Terns MP, Li H.

Nat Struct Mol Biol. 2009 Jul;16(7):740-6. doi: 10.1038/nsmb.1624. Epub 2009 May 28.

40.

A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis.

Venteicher AS, Abreu EB, Meng Z, McCann KE, Terns RM, Veenstra TD, Terns MP, Artandi SE.

Science. 2009 Jan 30;323(5914):644-8. doi: 10.1126/science.1165357.

41.

Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes.

Carte J, Wang R, Li H, Terns RM, Terns MP.

Genes Dev. 2008 Dec 15;22(24):3489-96. doi: 10.1101/gad.1742908.

42.

Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus.

Hale C, Kleppe K, Terns RM, Terns MP.

RNA. 2008 Dec;14(12):2572-9. doi: 10.1261/rna.1246808. Epub 2008 Oct 29.

43.

Telomerase reverse transcriptase is required for the localization of telomerase RNA to cajal bodies and telomeres in human cancer cells.

Tomlinson RL, Abreu EB, Ziegler T, Ly H, Counter CM, Terns RM, Terns MP.

Mol Biol Cell. 2008 Sep;19(9):3793-800. doi: 10.1091/mbc.E08-02-0184. Epub 2008 Jun 18.

44.

Identification of genes that function in the biogenesis and localization of small nucleolar RNAs in Saccharomyces cerevisiae.

Qiu H, Eifert J, Wacheul L, Thiry M, Berger AC, Jakovljevic J, Woolford JL Jr, Corbett AH, Lafontaine DL, Terns RM, Terns MP.

Mol Cell Biol. 2008 Jun;28(11):3686-99. doi: 10.1128/MCB.01115-07. Epub 2008 Mar 31.

45.

Determination of protein-RNA interaction sites in the Cbf5-H/ACA guide RNA complex by mass spectrometric protein footprinting.

Baker DL, Seyfried NT, Li H, Orlando R, Terns RM, Terns MP.

Biochemistry. 2008 Feb 12;47(6):1500-10. doi: 10.1021/bi701606m. Epub 2008 Jan 19.

PMID:
18205399
46.

Substrate RNA positioning in the archaeal H/ACA ribonucleoprotein complex.

Liang B, Xue S, Terns RM, Terns MP, Li H.

Nat Struct Mol Biol. 2007 Dec;14(12):1189-95.

PMID:
18059286
47.

Human telomerase RNA accumulation in Cajal bodies facilitates telomerase recruitment to telomeres and telomere elongation.

Cristofari G, Adolf E, Reichenbach P, Sikora K, Terns RM, Terns MP, Lingner J.

Mol Cell. 2007 Sep 21;27(6):882-9.

48.

Dynamic interactions within sub-complexes of the H/ACA pseudouridylation guide RNP.

Youssef OA, Terns RM, Terns MP.

Nucleic Acids Res. 2007;35(18):6196-206. Epub 2007 Sep 12.

49.

Alternative conformations of the archaeal Nop56/58-fibrillarin complex imply flexibility in box C/D RNPs.

Oruganti S, Zhang Y, Li H, Robinson H, Terns MP, Terns RM, Yang W, Li H.

J Mol Biol. 2007 Aug 31;371(5):1141-50. Epub 2007 Jun 15.

PMID:
17617422
50.

Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs.

Matera AG, Terns RM, Terns MP.

Nat Rev Mol Cell Biol. 2007 Mar;8(3):209-20. doi: 10.1038/nrm2124. Review.

PMID:
17318225

Supplemental Content

Loading ...
Support Center