Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 25

1.

Pollination Type Recognition from a Distance by the Ovary Is Revealed Through a Global Transcriptomic Analysis.

Joly V, Tebbji F, Nantel A, Matton DP.

Plants (Basel). 2019 Jun 24;8(6). pii: E185. doi: 10.3390/plants8060185.

2.

The p38/HOG stress-activated protein kinase network couples growth to division in Candida albicans.

Sellam A, Chaillot J, Mallick J, Tebbji F, Richard Albert J, Cook MA, Tyers M.

PLoS Genet. 2019 Mar 28;15(3):e1008052. doi: 10.1371/journal.pgen.1008052. eCollection 2019 Mar.

3.

Functional divergence of a global regulatory complex governing fungal filamentation.

Polvi EJ, Veri AO, Liu Z, Hossain S, Hyde S, Kim SH, Tebbji F, Sellam A, Todd RT, Xie JL, Lin ZY, Wong CJ, Shapiro RS, Whiteway M, Robbins N, Gingras AC, Selmecki A, Cowen LE.

PLoS Genet. 2019 Jan 7;15(1):e1007901. doi: 10.1371/journal.pgen.1007901. eCollection 2019 Jan.

4.

Integration of Growth and Cell Size via the TOR Pathway and the Dot6 Transcription Factor in Candida albicans.

Chaillot J, Tebbji F, Mallick J, Sellam A.

Genetics. 2019 Feb;211(2):637-650. doi: 10.1534/genetics.118.301872. Epub 2018 Dec 28.

PMID:
30593490
5.

Mms21: A Putative SUMO E3 Ligase in Candida albicans That Negatively Regulates Invasiveness and Filamentation, and Is Required for the Genotoxic and Cellular Stress Response.

Islam A, Tebbji F, Mallick J, Regan H, Dumeaux V, Omran RP, Whiteway M.

Genetics. 2019 Feb;211(2):579-595. doi: 10.1534/genetics.118.301769. Epub 2018 Dec 7.

PMID:
30530734
6.

Tuning Hsf1 levels drives distinct fungal morphogenetic programs with depletion impairing Hsp90 function and overexpression expanding the target space.

Veri AO, Miao Z, Shapiro RS, Tebbji F, O'Meara TR, Kim SH, Colazo J, Tan K, Vyas VK, Whiteway M, Robbins N, Wong KH, Cowen LE.

PLoS Genet. 2018 Mar 28;14(3):e1007270. doi: 10.1371/journal.pgen.1007270. eCollection 2018 Mar.

7.

The Human Gut Microbial Metabolome Modulates Fungal Growth via the TOR Signaling Pathway.

García C, Tebbji F, Daigneault M, Liu NN, Köhler JR, Allen-Vercoe E, Sellam A.

mSphere. 2017 Dec 13;2(6). pii: e00555-17. doi: 10.1128/mSphere.00555-17. eCollection 2017 Nov-Dec.

8.

The Genomic Landscape of the Fungus-Specific SWI/SNF Complex Subunit, Snf6, in Candida albicans.

Tebbji F, Chen Y, Sellam A, Whiteway M.

mSphere. 2017 Nov 15;2(6). pii: e00497-17. doi: 10.1128/mSphere.00497-17. eCollection 2017 Nov-Dec.

9.

pH-Dependant Antifungal Activity of Valproic Acid against the Human Fungal Pathogen Candida albicans.

Chaillot J, Tebbji F, García C, Wurtele H, Pelletier R, Sellam A.

Front Microbiol. 2017 Oct 9;8:1956. doi: 10.3389/fmicb.2017.01956. eCollection 2017.

10.

Rewiring of the Ppr1 Zinc Cluster Transcription Factor from Purine Catabolism to Pyrimidine Biogenesis in the Saccharomycetaceae.

Tebung WA, Choudhury BI, Tebbji F, Morschhäuser J, Whiteway M.

Curr Biol. 2016 Jul 11;26(13):1677-1687. doi: 10.1016/j.cub.2016.04.064. Epub 2016 Jun 16.

11.

The Monoterpene Carvacrol Generates Endoplasmic Reticulum Stress in the Pathogenic Fungus Candida albicans.

Chaillot J, Tebbji F, Remmal A, Boone C, Brown GW, Bellaoui M, Sellam A.

Antimicrob Agents Chemother. 2015 Aug;59(8):4584-92. doi: 10.1128/AAC.00551-15. Epub 2015 May 26.

12.

The FRK1 mitogen-activated protein kinase kinase kinase (MAPKKK) from Solanum chacoense is involved in embryo sac and pollen development.

Lafleur E, Kapfer C, Joly V, Liu Y, Tebbji F, Daigle C, Gray-Mitsumune M, Cappadocia M, Nantel A, Matton DP.

J Exp Bot. 2015 Apr;66(7):1833-43. doi: 10.1093/jxb/eru524. Epub 2015 Jan 8.

13.

A functional portrait of Med7 and the mediator complex in Candida albicans.

Tebbji F, Chen Y, Richard Albert J, Gunsalus KT, Kumamoto CA, Nantel A, Sellam A, Whiteway M.

PLoS Genet. 2014 Nov 6;10(11):e1004770. doi: 10.1371/journal.pgen.1004770. eCollection 2014 Nov.

14.

Modeling the transcriptional regulatory network that controls the early hypoxic response in Candida albicans.

Sellam A, van het Hoog M, Tebbji F, Beaurepaire C, Whiteway M, Nantel A.

Eukaryot Cell. 2014 May;13(5):675-90. doi: 10.1128/EC.00292-13. Epub 2014 Mar 28.

15.

Global gene deletion analysis exploring yeast filamentous growth.

Ryan O, Shapiro RS, Kurat CF, Mayhew D, Baryshnikova A, Chin B, Lin ZY, Cox MJ, Vizeacoumar F, Cheung D, Bahr S, Tsui K, Tebbji F, Sellam A, Istel F, Schwarzmüller T, Reynolds TB, Kuchler K, Gifford DK, Whiteway M, Giaever G, Nislow C, Costanzo M, Gingras AC, Mitra RD, Andrews B, Fink GR, Cowen LE, Boone C.

Science. 2012 Sep 14;337(6100):1353-6. doi: 10.1126/science.1224339.

16.

A novel role for the transcription factor Cwt1p as a negative regulator of nitrosative stress in Candida albicans.

Sellam A, Tebbji F, Whiteway M, Nantel A.

PLoS One. 2012;7(8):e43956. doi: 10.1371/journal.pone.0043956. Epub 2012 Aug 29.

17.

Pho85, Pcl1, and Hms1 signaling governs Candida albicans morphogenesis induced by high temperature or Hsp90 compromise.

Shapiro RS, Sellam A, Tebbji F, Whiteway M, Nantel A, Cowen LE.

Curr Biol. 2012 Mar 20;22(6):461-70. doi: 10.1016/j.cub.2012.01.062. Epub 2012 Feb 23.

18.
19.

Experimental annotation of the human pathogen Candida albicans coding and noncoding transcribed regions using high-resolution tiling arrays.

Sellam A, Hogues H, Askew C, Tebbji F, van Het Hoog M, Lavoie H, Kumamoto CA, Whiteway M, Nantel A.

Genome Biol. 2010;11(7):R71. doi: 10.1186/gb-2010-11-7-r71. Epub 2010 Jul 9.

20.

Role of transcription factor CaNdt80p in cell separation, hyphal growth, and virulence in Candida albicans.

Sellam A, Askew C, Epp E, Tebbji F, Mullick A, Whiteway M, Nantel A.

Eukaryot Cell. 2010 Apr;9(4):634-44. doi: 10.1128/EC.00325-09. Epub 2010 Jan 22.

21.

Role of Ndt80p in sterol metabolism regulation and azole resistance in Candida albicans.

Sellam A, Tebbji F, Nantel A.

Eukaryot Cell. 2009 Aug;8(8):1174-83. doi: 10.1128/EC.00074-09. Epub 2009 Jun 19.

22.

From the notch signaling pathway to ribosome biogenesis.

Chantha SC, Tebbji F, Matton DP.

Plant Signal Behav. 2007 May;2(3):168-70.

23.
24.

Loss of ovule identity induced by overexpression of the fertilization-related kinase 2 (ScFRK2), a MAPKKK from Solanum chacoense.

Gray-Mitsumune M, O'Brien M, Bertrand C, Tebbji F, Nantel A, Matton DP.

J Exp Bot. 2006;57(15):4171-87. Epub 2006 Nov 16.

PMID:
17110585
25.

A bacterial artificial chromosome based physical map of the Ustilago maydis genome.

Meksem K, Shultz J, Tebbji F, Jamai A, Henrich J, Kranz H, Arenz M, Schlueter T, Ishihara H, Jyothi LN, Zhang HB, Lightfoot DA.

Genome. 2005 Apr;48(2):207-16.

PMID:
15838542

Supplemental Content

Loading ...
Support Center